Computer-Assisted Rod Contouring in Deformity Surgery. Is it Worth it?

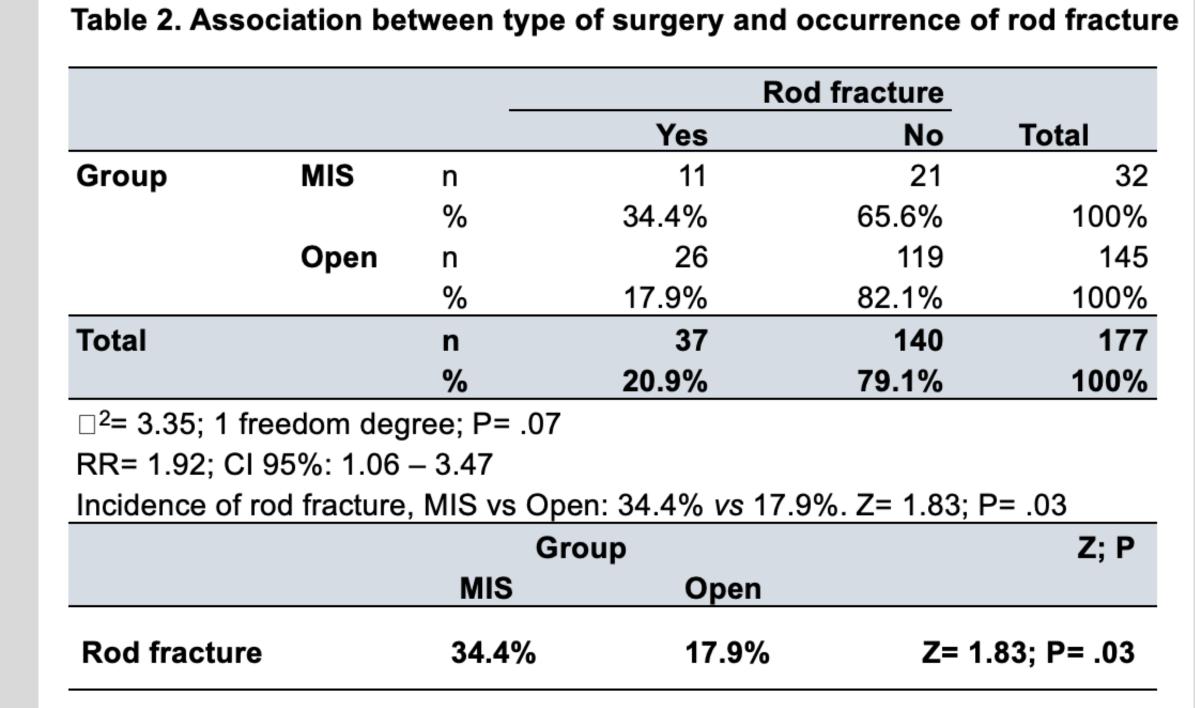
Adolfo Viloria Hidalgo¹, MD; Jay Kumar¹, MD; Ammad Baig², MD; Bryan Clampitt³, BS; Elliot Pressman¹, MD; and Puya Alikhani¹, MD, FAANS

1Department of Neurosurgery and Brain Repair, USF, Tampa, FL, USA; 2Department of Neurological Surgery, University at Buffalo, Buffalo, NY, USA; 3USF Health Morsani College of Medicine, Tampa, FL, USA

INTRODUCTION

- ❖ In adult spinal deformity surgery, rod-contouring is a critical step that determines postoperative alignment.
- While the rod is traditionally contoured manually, novel computer-assisted systems have emerged in the hopes of minimizing operation time and blood loss, and improving accuracy.
- However, these systems require aggressive bending that may increase risk of rod fractures.
- Incidence of fracture after computer-assisted contouring versus that after manual contouring has been poorly reported.

METHODS


- ❖ We retrospectively reviewed a prospectively maintained database of consecutive cases at our institution from January 2016 through November 2021.
- ❖ Inclusion criteria were age >18, fusion of ≥5 vertebrae, and rod implantation, and minimum 1 year follow-up with radiographs. Patients were divided into computer-assisted (CA) group and traditional-contouring (TC) groups.
- Incidence of rod fracture between the groups was determined
- Mann-Whitney nonparametric test was used to compare medians between the groups
- ❖ A P value < 0.05 was considered statically significant.</p>

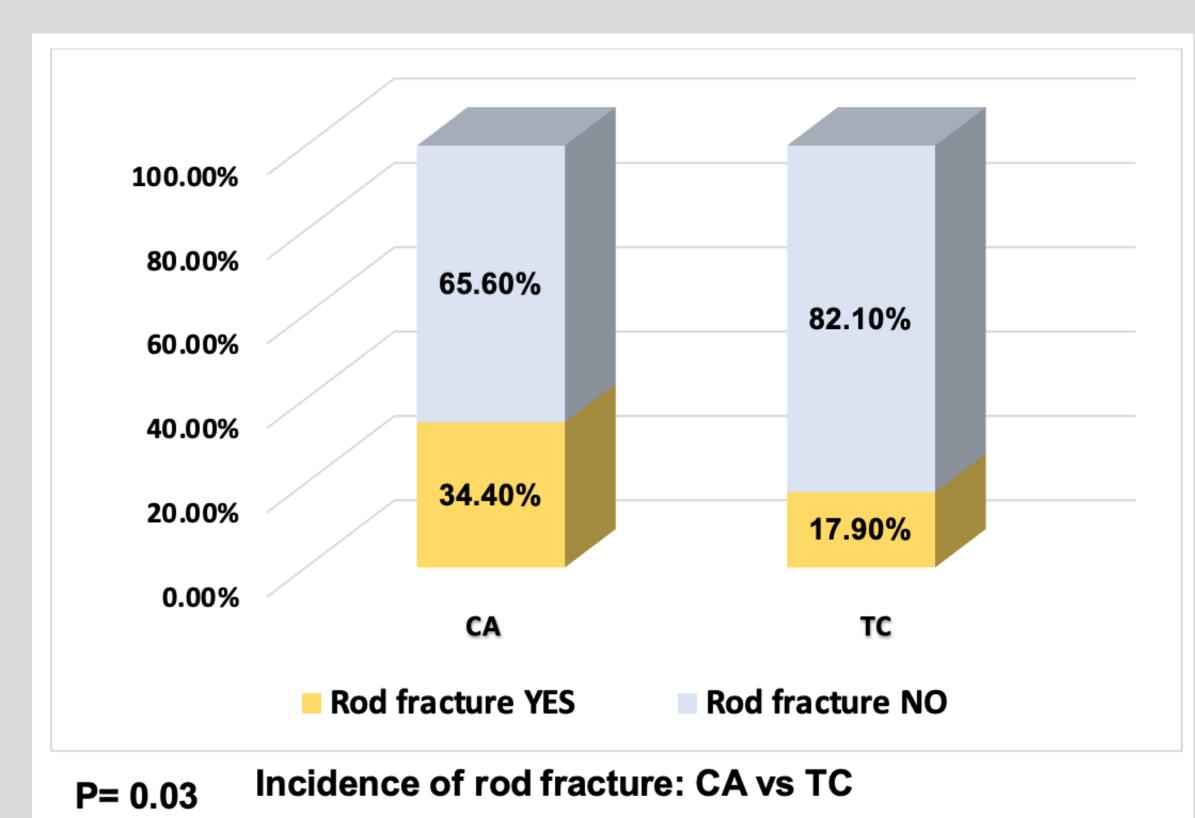

Breakdown of Patient Population

Table 1. Distribution of patients according to age, sex and Body Mass Index (BMI) in studied groups

Variable		MIS (n = 32)	(1	Open n = 145)	Z; P
Age (years)	n	%	n	%	
33 – 39	0	.0	4	2.8	Z= .29; P= .39
40 – 49	0	.0	5	3.4	Z= .48; P= .32
50 – 59	6	18.8	39	26.9	Z= .73; P= .23
60 – 69	15	46.9	60	41.4	Z= .37; P= .35
70 – 80	11	34.4	37	25.5	Z= .81; P= .21
Sex	n	%	n	%	
Masculine	18	56.3	86	59.3	Z= .12; P= .45
Femenine	14	43.8	59	40.7	Z= .12; P= .45
ВМІ	n	%	n	%	
<18.5	1	3.1	1	.7	Z= .26; P= .39
18.5 - 24.9	10	31.3	26	17.9	Z= 1.45; P= .07
25.0 - 29.9	11	34.4	48	33.1	Z= .07; P= .47
30.0 - 34.9	6	18.8	41	28.3	Z= .88; P= .19
35.0 - 39.9	3	9.4	23	15.9	Z= .66; P= .25
40.0 and more	1	3.1	6	4.1	Z= .23; P= .41
Total	32	100	145	100	-
Age years (Md ± ICR)*	66.5 ± 9.5		63.0 ± 13.0		Z= 1.72; P= .09
BMI (Md ± ICR)*	27	7.18 ± 7.81	29.50 ± 7.76		Z= 1.83; P= .05
Md ± ICR: Median ± Interquartile Rank					

*Mann-Whitney non-parametric test

RESULTS:

- ❖ 177 patients were identified, with 32 CA and 145 TC.
- ❖ The most frequent age range was 60-69 years in both groups: CA 46.9% (n=15) and TC 41.4% (n=60).
- ❖ There were no differences between the groups in age, sex or body mass index (*p*>.05). Rod fracture incidence was 34.4% in the CA group versus 17.9% in the TC group (Z=1.83; *p*=0.03).
- ❖ The risk of presenting rod fracture in the MIS group was 1.92 times higher than those who underwent open surgery.

CONCLUSIONS

- ❖ The use of computer-assisted rod-contouring in deformity surgery was associated with a higher incidence of rod fractures.
- This can predispose patients to pseudoarthrosis, postoperative pain, neurologic deficit, and reoperation.
- ❖ Increased risk of fracture may be due to aggressive bending and notching of the rod that is associated more with computer-assisted systems than with traditional manual systems

