Machine Learning Approach to Predict Acute Kidney Injury Among Patients Undergoing

Spinal Posterior Instrumented Fusion

Kevin Heo, BS; Prashant V. Rajan, MD; Sameer Khawaja, BS; Lauren A. Barber, MD; Sangwook T. Yoon, MD, PhD

Emory University Department of Orthopaedics

INTRODUCTION

 Acute kidney injury (AKI) after spine surgery can lead to significant morbidity and poor outcomes

EMORY

UNIVERSITY

SCHOOL OF MEDICINE

- Few studies have evaluated perioperative risk factors associated with AKI after spine surgery
- · Study Aims:
 - Incorporate machine learning (ML) models to stratify risk factors for 90-day AKI from a large, national database
 - Develop a simple predictive risk calculator for postop AKI

METHODS

IBM MarketScan database queried for patients who underwent spinal posterior instrumented fusion 2009-2021

Excluded traumas, malignancies, or infections

90-day AKI collected w/ ICD codes

Demographics and patient comorbidities collected

5 ML models w/k-fold cross validation using 80-20% split

XGBoost Tree

Logistic Regression

Random Forest

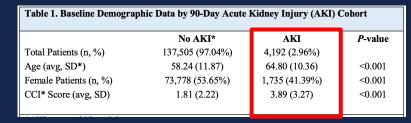
Model

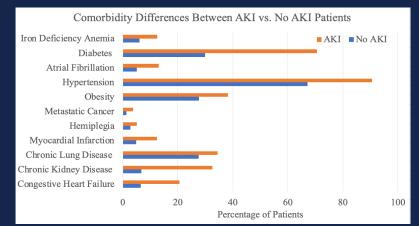
Logistic

Regression

AUROC Variable 1

Chronic


Renal


Disease

Neural Networks

Linear Support Vector Machine

RESULTS

Variable 2

Hypertension

• CKD, HTN, Diabetes, Older Age (>65 v/o), CHF

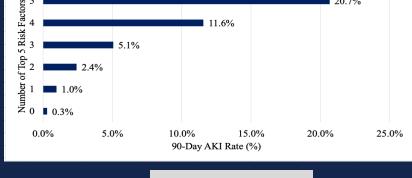
Top 5 risk factors for AKI listed above according to logistic regression model

Logistic regression performed the best w/ AUC of 0.75

Variable 3

Diabetes w/o

Complications


Variable 4

Older Age

Variable 5

Congestive Heart

Failure

AKI Risk Calculator Based on Logistic Regression Model

DISCUSSION

- Logistic regression had the best prediction rates of AKI
- Top 5 risk factors: chronic kidney disease, HTN, diabetes, older age (>65), CHF
- Patients with increasing # of risk factors had increased AKI rates
- Patients with high risk factors may require optimal medical management and closer follow up after surgery
- ML models can be utilized to build user interfaces for patients/physicians
- Advantages: >140,000 patients incorporated, large input of risk factors
- Limitations: lab values, operative notes unavailable, med adherence unknown

REFERENCES

- Ilyas H, Golubovsky JL, Chen J, Winkelman RD, Mroz TE, Steinmetz MP. Risk factors for 90-day reoperation and readmission after lumbar surgery for lumbar spinal stenosis. J Neurosurg Spine. 2019;31(1):20-26. doi:10.3171/2019.1. SPINET.8878.
- Naik BI, Colquhoun DA, McKinney WE, et al. Incidence and risk factors for acute kidney injury after spine surgery using the RIFLE classification. J Neurosurg Spine. 2014;20(5):505-511. doi:10.3171/2014.2.SPINE13596
- Shohat, N., Goswami, K., Tan, T. L., Yayac, M., Soriano, A., Sousa, R., Wouthuyzen-Bakker, M., Parvizi, J., & ESCMID Study Group of Implant Associated Infections (ESGIAI) and the Northern Infection Network of Joint Arthroplasty (NINJA) (2020). 2020 Frank Stinchfield Award: Identifying who will fail following irrigation and debridement for prosthetic joint infection. The bone & joint journal, 102-B(7_Supple_B), 11–19. https://doi.org/10.1302/0301-620X.102B7.BJJ-2019-1628.R1