

Revision Surgery for Proximal Junctional Failure: A Single-center Analysis of 1180 Adult Spinal Deformity Patients with Long-term Follow-up

Adida S, Hudson JS, Legarreta A, Taori S, Shanahan RM, Jawad-Makki MAH, Colan JA, Mitha R, Agarwal N, Okonkwo DO, Hamilton DK, Buell TJ

Introduction

Adult spinal deformity (ASD) presents as a spectrum of thoracolumbar and lumbar spine abnormalities including sagittal imbalance, iatrogenic spinal deformity, and adult idiopathic or degenerative scoliosis. It is often characterized by asymmetric and degenerative changes that may cause impingement of neural elements. This, in turn, may lead to progressive deformity, neurological deficits, and pain. Surgical intervention has become an important treatment option for symptomatic ASD.¹ Correction of spinal deformity is usually performed via posterior approach. A long-segment fusion construct with segmental pedicle screw and rod instrumentation is often combined with a variety of osteotomies to improve spinal alignment. However, long-segment fixation may accelerate degenerative changes to adjacent unfused vertebrae due to increased segment motion and intervertebral stress.²⁻⁴ Proximal junctional kyphosis (PJK) is a common radiographical finding that occurs at the proximal junction between fused and mobile spinal segments with incidence rates as high as 46% after posterior instrumented spinal fusion.⁵ Proximal junctional failure (PJF) represents a more severe form of PJK associated with vertebral fracture, disruption of the posterior ligamentous complex, and/or instrument failure.⁶ The prevalence of PJF has been reported to be 39.3% in patients who undergo spinal deformity fusion surgery and is often accompanied by sagittal imbalance and neurologic deficit.⁷ Revision surgery is often needed for correction, which may entail proximal extension of instrumentation and fusion above the affected junctional pathology. There have been only a few studies that investigate revision strategies for PJK and PJF, and even fewer that report the incidence of recurrent junctional pathology after revision.⁸

Objective

The objective of this study is to report the incidence of PJF and recurrent PJF at a large singleinstitution after instrumented fusion to the pelvis indicated for ASD. Presenting neurological deficit(s), mechanisms of failure, revision strategies, and radiographic outcomes after revision surgery are then analyzed to elucidate predictive factors.

Methods

Retrospective review of 1180 ASD patients who underwent surgical correction at a single-institution by five surgeons (2009-2021) was performed. Inclusion criteria included a diagnosis of treated with posterior instrumented fusion to the pelvis. This series included both primary and revision surgeries. The average follow-up after revision was 3.1 ± 2.0 years. Fifty-four patients met the inclusion criteria and developed PJF following surgery. The patients were then divided into three groups based on the location of their uppermost instrumented vertebra (UIV): upper thoracic (T2-T6, 10 patients), lower thoracic (T8-T11, 35 patients), and the lumbar spine (L1–L3, 9 patients). For this study, PJF was defined by: (1) PJK defined previously by Glattes et al.; (2) fracture of the vertebral body of the UIV or UIV+1, screw pullout at the UIV, or soft-tissue posterior ligamentous disruption; and (3) neurological deficit at the time of presentation. Mechanisms of PJF were separated into two groups: (1) vertebral fracture or screw pullout and (2) soft-tissue disruption. Clinical data and surgical details were identified. Radiographic parameters measured include the proximal junctional angle (PJA) of the uppermost instrumented vertebra (UIV), C7 sagittal vertical axis (SVA), T4-T12 thoracic kyphosis (TK), L1-S1 lumbar lordosis (LL), pelvic tilt (PT), and pelvic incidence (PI)-LL mismatch (PI-LL). Ideal agespecific alignments were calculated.⁹ A negative offset, defined as the difference between the patient's and ideal age-specific alignment, denotes an overcorrection.

Results								
Location of UIV	Upper Thoracic (N = 10)	Lower Thoracic (N = 35)	Lumbar (N = 9)	Р	Recurrence of PJF	Non-recurrence (N = 38)	Recurrence (N = 16)	Р
Patient Demographics	67.0 ± 6.8 (68 [52-76])	64.5 ± 6.3 (66 [51-74])	64.6 ± 8.9 (69 [50-75])	0.594	Patient Demographics	(5.4 + (0. ((7.150.7(1)		0.492
Age (years) Sex (no. of pts.)	$07.0 \pm 0.8 (08 [32-70])$	$64.5 \pm 0.5 (00 [51-74])$	$04.0 \pm 0.9 (09 [30-73])$	0.594	Age (years) Sex (no. of pts.)	65.4 ± 6.9 (67 [50-76])	64.0 ± 6.7 (66 [51-74])	0.483 0.071
Male	5 (50.0%)	16 (45.7%)	4 (44.4%)	0.511	Male	17 (44.7%)	3 (18.9%)	0.071
Female	5 (50.0%)	19 (54.3%)	5 (55.6%)		Female	21 (56.4%)	13 (81.3%)	
BMI (kg/m^2)	30.3 ± 3.8 (30.1 [22.9-37.5])	29.7 ± 6.1 (29.6 [16.9-39.0])	32.2 ± 7.1 (34.1 [19.9-41.6])	0.438	BMI (kg/m ²)	29.4 ± 5.4 (29.6 [16.9-39.9])	31.8 ± 6.4 (32.1 [22.2-41.6])	0.164
Osteoporosis (no. of pts.)	6 (60.0%)	9 (25.7%)	1 (11.1%)	0.045*	Comorbidities	12 (20 00()	2 (26 (2))	0.055
Rheumatoid arthritis (no. of pts.)	4 (40.0%)	5 (14.3%)	1 (11.1%)	0.156	Osteoporosis (no. of pts.) Rheumatoid arthritis (no. of pts.)	13 (30.8%) 5 (15.4%)	3 (26.6%) 5 (26.6%)	0.256 0.118
Diabetes mellitus (no. of pts.)	1 (10.0)	9 (25.7%)	6 (66.7)	0.017*	Diabetes mellitus (no. of pts.)	11 (30.8%)	5 (26.6%)	0.866
Current or former tobacco use (no. of pts.)	5 (50.0%)	14 (40.0%)	5 (55.6%)	0.666	Current or former tobacco use (no. of pts.)	20 (51.3%)	4 (26.6%)	0.062
Previous spine surgery (no. of pts.)	7 (70.0%)	19 (57.1%)	4 (44.4%)	0.546	Previous spine surgery (no. of pts.)	22 (59.0%)	9 (53.3%)	0.911
Neurological deficit(s) at failure Radiculopathy	9 (90.0%)	17 (48.6%)	7 (77.8%)	0.032*	Revision Surgery	50 10 (511.01)		0.007
Myelopathy	5 (50.0%)	19 (54.3%)	2 (22.2%)	0.227	Levels extended proximally	$5.0 \pm 1.8 (5 [1-8])$	6.0 ± 2.0 (7 [2-9])	0.087
Central Canal Stenosis	5 (50.0%)	29 (82.9%)	8 (88.9%)	0.136	Operative time (min.) Estimated blood loss (mL)	301 ± 103 (294 [126-558]) 1054 ± 908 (800 [200-4700])	$301 \pm 90 (317 [158-449])$ $1137 \pm 832 (1000 [350-3500])$	0.996 0.762
Motor Deficits	4 (40.0%)	9 (25.7%)	5 (55.6%)	0.957	Age-Specific Alignment After Revision	1001-900 (000 [200 1/00])	115, = 552 (1000 [550 5500])	0.536
Bowel and/or Bladder Incontinence	0 (0%)	3 (9.6%)	2 (22.2%)	0.969	Overcorrected	11 (28.9%)	6 (37.5%)	
Spinal Cord Injury	3 (30.0%)	5 (14.3%)	1 (11.1%)	0.187	Undercorrected	27 (71.0%)	10 (62.5%)	
Failure Modes					Radiographic Parameters After Revision	26141	46151	0.401
Fracture or Screw Pullout (no. of pts.)	5 (50.0%)	28 (80.0%)	8 (88.9%)	<0.001*	ΔPT° ΔLL°	-3.6 ± 4.1 1.6 ± 7.3	-4.6 ± 5.1 2.9 ± 6.1	0.481 0.542
Soft-tissue Failure (no. of pts.)	5 (50.0%)	7 (20.0%)	1 (11.1%)	0.089	ΔPI-LL°	-2.3 ± 6.1	-1.1 ± 5.9	0.542
Age-Specific Alignment Before Revision	2 (20.00()	C (1 4 00/)	0 (00()	0.816	Δ SVA (mm.)	-23.3 ± 30.8	-20.0 ± 40.3	0.743
Overcorrected	2 (20.0%) 8 (80.0%)	5 (14.3%)	0 (0%)		ΔTK°	-4.4 ± 9.5	-4.6 ± 7.3	0.945
Undercorrected Age-Specific Alignment After Revision	8 (80.076)	30 (85.7%)	9 (100.0%)	0.333				
Overcorrected	4 (40.0%)	12 (34.3%)	1 (11.1%)	0.555				-
Undercorrected	6 (60.0%)	23 (65.7%)	8 (88.9%)			^{C3} ← ^{Fi}	gure: Revision strategies for I	PJF after
Primary Surgery					A B	7.5 ± 3.3 levels fu	sion to the pelvis stratified by UI	V. A heat
Operative Time (min.)	451 ± 97 (405.5 [346-627])	373 ± 114 (366 [93-743])	297 ± 85 (296 [160-409])	0.011*			ap (A) is used to identify T5, T1(0 and 12
Estimated blood loss (mL)	2672 ± 1971 (1700 [900-7000])	$1240 \pm 626 \ (1200 \ [100-3000])$	983 ± 628 (1200 [250-2000])	<0.001*		2.5 ± 0.8 levels	ap (A) is used to identify 15, 110	o, and Lz
Bone morphogenic protein (no. of pts.)	2 (20.0%)	17 (48.6%)	1 (11.1%)	0.054	T ₄ Upper Thoracic Cohort	as as	the most common vertebrae for	PJF, with
Demineralized bone matrix (no. of pts.)	5 (50.0%)	13 (37.1%)	3 (33.3%)	0.711	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S m	ore red vertebrae indicatin	g more
Number of osteotomies (no.)	6.8 ± 3.0 (7 [2-13])	$3.3 \pm 2.8 (3 [0-9])$	$1.2 \pm 2.0 \ (0 \ [0-5])$	<0.001*	6.0 ± 1.6 levels			0
No osteotomies Only posterior column (no. of pts.)	0 (0%) 9 (90.0%)	6 (17.1%) 24 (68.9%)	6 (66.7%) 3 (33.3%)	0.003* 0.031*			equent failure. Extension of fus	ion atter
\geq 1 3-column (no. of pts.)	1 (10.0%)	5 (14.3%)	0 (0%)	0.884	Lower Thoracic Cohort	PJ	F (B) is then visualized for eac	ch group
Number of rods (no.)	$2.4 \pm 0.7 (2 [2-4])$	$2.3 \pm 0.6 (2 [2-4])$	2.1 ± 0.3 (2 [2-3])	0.540		in	dividually. Red circles repres	ent the
Supplemental rods (no. of pts.)	3 (30.0%)	8 (22.9%)	1(11.1%)	0.606		4.6 ± 1.9 levels		
Revision Surgery						av	erage primary UIV for each coho	rt (upper
Operative Time (min.)	303 ± 111 (337.5 [159-515])	307 ± 95 (299 [158-558])	274 ± 104 (293 [126-449])	0.677	Lumbar Cohort	th th	oracic: T4.0 \pm 1.1, lower thoracic	: T10.0 \pm
Estimated blood loss (mL)	950 ± 625 (825 [200-2250])	1207 ± 1023 (1000 [250-4700])	747 ± 317 (800 [250-1100])	0.341		\sim	7, and lumbar: L1.8 \pm 0.7). Tl	he mean
Bone morphogenic protein (no. of pts.)	3 (30.0%)	16 (45.7%)	0 (0%)	0.139		С. U.	7, and fullibal. L1.0 \pm 0.7]. If	ne mean
Demineralized bone matrix (no. of pts.)	4 (40.0%)	17 (48.6%)	7 (77.7%)	0.208		ex	tension of fusion is indicat	ed with
Number of osteotomies (no.) No osteotomies	$2.0 \pm 1.7 (2 [0-4])$ 3 (30.0%)	2.6 ± 1.9 (3 [0-7]) 9 (25.7%)	$2.6 \pm 2.8 (2 [0-8])$ 3 (33.3%)	0.698 0.889		ar	rows. Of note, the upper thorac	ic cohort
Only posterior column (no. of pts.)	5 (50.0%)	23 (65.7%)	6 (66.7%)	0.642			as divided into two groups, one	in which
\geq 1 3-column (no. of pts.)	2 (20.0%)	3 (8.6%)	0 (0%)	0.597				
Number of rods (no.)	3.1 ± 0.9 (3 [2-5)]	3.3 ± 0.9 (3[2-6])	2.7 ± 0.9 (2 [2-4])	0.170	Д Д	re	vision crossed the cervice	otnoracic
Supplemental rods (no. of pts.)	8 (80.0%)	28 (80.0%)	4 (44.4%)	0.085		ju	nction and another that did not.	

Conclusions

A comparative analysis of indications and revision strategies for PJF is presented. Of 1180 ASD patients, 54 (4.6%) developed PJF and underwent revision 17.6 ± 16.1 months after their primary surgery. Regarding mechanisms of PJF, soft-tissue disruption was most common in the upper thoracic group (P = 0.089). Vertebral fracture and screw pullout were most common in both the lower thoracic and lumbar groups (P < 0.001). Of patients in the upper thoracic group, 40.0% were extended above the cervicothoracic junction. In the lower thoracic and lumbar spine groups, 91.4% and 88.9% of patients were extended to the upper thoracic and lower thoracic spine, respectively. A total of 26 patients (48.1%) required a second revision surgery 18.7 ± 15.2 months after their first. Sixteen of the 26 patients (27.8%) were revised for new-onset PJF. Patient-specific and radiographic risk factors for recurrent PJF could not be elucidated. Recurrent PJF was found to be the most common complication following revision surgery, and strategies for revision must be tailored to the individual patient for desired outcomes.

Department of Neurological Surgery, University of Pittsburgh School of Medicine

- Asian Spine J. Dec 2020;14(6):886-897.

- 2005;30(14):1643-9
- *Neurosurg Clin N Am*. Apr 2013;24(2):213-8.

- Surgery Account for Age? *Spine (Phila Pa 1976)*. Jan 2016;41(1):62-8.

References

1. Kim HJ, Yang JH, Chang DG, et al. Adult Spinal Deformity: Current Concepts and Decision-Making Strategies for Management.

2. Zhang C, Berven SH, Fortin M, Weber MH. Adjacent Segment Degeneration Versus Disease After Lumbar Spine Fusion for Degenerative Pathology: A Systematic Review With Meta-Analysis of the Literature. *Clin Spine Surg*. Feb 2016;29(1):21-9. Wang H, Ma L, Yang D, et al. Incidence and risk factors of adjacent segment disease following posterior decompression and instrumented fusion for degenerative lumbar disorders. *Medicine (Baltimore)*. Feb 2017;96(5):e6032.

Nakashima H, Kawakami N, Tsuji T, et al. Adjacent Segment Disease After Posterior Lumbar Interbody Fusion: Based on Cases With a Minimum of 10 Years of Follow-up. Spine (Phila Pa 1976). Jul 15 2015;40(14):E831-41.

4. Glattes RC, Bridwell KH, Lenke LG, Kim YJ, Rinella A, Edwards C, 2nd. Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: incidence, outcomes, and risk factor analysis. Spine (Phila Pa 1976). Jul 15

5. Hart RA, McCarthy I, Ames CP, Shaffrey CI, Hamilton DK, Hostin R. Proximal junctional kyphosis and proximal junctional failure.

6. Rahmani R, Sanda M, Sheffels E, et al. The efficacy of prophylactic vertebroplasty for preventing proximal junctional complications after spinal fusion: a systematic review. Spine J. Dec 2022;22(12):2050-2058.

7. Kim YC, Lenke LG, Bridwell KH, et al. Results of Revision Surgery for Proximal Junctional Kyphosis Following Posterior Segmental Instrumentation: Minimum 2-Year Postrevision Follow-Up. Spine (Phila Pa 1976). Dec 15 2016;41(24):E1444-E1452.

8. Lafage R, Schwab F, Challier V, et al. Defining Spino-Pelvic Alignment Thresholds: Should Operative Goals in Adult Spinal Deformity

