Utilization of the Fragility Index to Assess Randomized Controlled Trials comparing Cervical Total Disc Arthroplasty to Anterior Cervical Discectomy and Fusion

Sarah L. Lucas, B.S.¹; Austin H. Carroll, M.D.²; Zachary Backstrom, B.S.¹; Kory Pasko, B.S.¹; Addisu Mesfin³

¹Georgetown University School of Medicine, Washington, D.C., USA, ² MedStar Georgetown University Hospital, Department of Orthopaedic Surgery, Washington, D.C., USA ³ MedStar Washington Hospital Center, Department of Orthopaedic Surgery, Washington, D.C., USA

INTRODUCTION

Background Cervical total disc arthroplasty (cTDA) remains an alternative to anterior cervical discectomy and fusion (ACDF) in select patients with cervical radiculopathy or myelopathy secondary to degenerative disc disease. RCTs investigating CTDA often have conflicting conclusions and varying quality.

Rationale The fragility index (FI) is a metric that can be used to assess the robustness of statistically significant, dichotomous outcome variables in RCTs. Spine literature is amongst the least robust, with 75% of RCTs boasting an FI less than 3.^{1,2} A review of studies classified as robust by the AAOS suggests a threshold FI of $\geq 2.^3$

Objective To investigate the fragility of RCTs comparing cTDA vs ACDF.

METHODS

A systematic review was performed by searching PubMed, Ovid MEDLINE, Web of Science, and Embase for RCTs with two parallel study arms and 1:1 allocation of subjects to treatment or control groups investigating CTDA vs. ACDF with at least one statistically significant, dichotomous outcome. The FI was calculated by individually shifting one patient from the event group to the non-event group with recalculation of Fisher's Exact test until the reported P value was no longer statistically significant (p > 0.05).

Identification	Records identified through database searching (n = 1,530)	Additional records identified through otl sources (n = 0)	her
Screening	Records after duplicat (n = 928) Records scree (n = 928)	es removed	Records excluded (n=807)
Eligibility	Full-text articles as eligibility (n =	sessed for 121)	Full-text articles excluded for reasons such as no significant dichotomous variable, no P value, lack of 1:1 randomization (n = 99)
Included	Studies included in analysis (n =	qualitative 22]	

RESULTS

The search identified 934 abstracts for screening with 22 RCTs meeting inclusion criteria. The mean patient sample size was 277.1 (median 209, range 30-541). The number of patients lost to follow-up was 0 in only 1 of the studies and ranged from 0-231 (mean 74.3, median 45). The reported P-value of the significant dichotomous outcomes used for FI calculation ranged from <0.001 to 0.049. The mean FI of all included studies was 2.27 (range 0-7, median 1.5, mode 1) with 3 (13.6%) studies having an associated FI of 0. The FI was <2 in 68.2% (15/22) of studies and ≥ 2 in 31.8% (7/22) of studies. Three studies had an FI of zero Loss to follow up exceeded the fragility index in all but one of the 22 included studies.

Study	Joarnal	Study Comparison	Primary Outcome	Significant Dichotemo US	Total. No. Patients	Number Lost to Follow-up	P-Value	
Anderson et al. 2008	Spine	CDD&vs ACDF (Single Level)	2.gogs.Adverse Events	Adverse Medical Events (6 Use - 3 years)	463	46	0.049	c)
Budeus et al. 2014	Journal of Neurosurvery	CUDA vs ACDF (Single Level)	Zucas, Clinical Outcomes (NDI, autobasical status) and Segmental Motion	Maintenanc e of Neurologic al Status	541	146	0.017	2
Cheng et al. 2011	Clinical Octoonadies and Related Research.	CIDA vs ACDF (1, 2 and 3 Level)	3 year Clinical and Radiographic Efficacy and Safety Modified Odom's Criteria, JOA, SF-36, NDI, ROM, Stability, Subsidence)	Dysphagia	83	2	<0.001	j.
Corsect al. 2010	Journal of Neurosurgery: Spine	GUDA vs ACDF (Single Level)	Sugar Clinical Outcomes and Efficacy (NDI, NPI, VAS, Composite Success)	Composite Clinical Success	98	8	0.035	
Coricet al. 2011	Journal of Neurosurgery: Spine	CUDA vs ACDF (Single Level)	2.0000 Clinical Outcomes and Efficary (NDI, NPI, VAS, Composite Success)	Composite Overall Success	269	35	0.05	7
Deluonation et al. 2010	SAS Journal	CDDA.vs ACDF (Single Level)	4 year Clinical and Radiographic Efficacy (NDI, VAS, Neurological exam, Reoperations)	48-month Rates of Re-	209	95	0.8292	,
Delassardor et al. 2013	Spine	GUO&vs ACDF (Single Level)	Sauce Reasons/Rates Secondary Surgical Interventions	5 Year Rates of Ro-	209	76	0.0079	-
Heller et al. 2009	Spine	CDA.vs ACDF (Single Level)	2. Clinical Outcomes (NDI, Composite Neurological Success)	Composite Neurologic al Success	463	39	0.01	
600 et al. 2016	The Bone & Joint Journal	CUDA vs ACDF (Single Level)	Satety and Efficacy (JOA, VAS, NDI, ROM, secondary surgeries)	Rate of Secondary Surgery	108	8	0.49	ŝ
Howell et al. 2015	Spine Journal	CUDA vs ACDF (Single Level)	7 year Clinical and Radiographic Sufety and Efficacy (NDI, Pt satisfaction, Disc Height, ROM, Secondary surgeries, Adjacent segment Disease)	Maintenanc e of Normal Disc Heisth	404	225	<0.001	-
Janssen et al. 2014	Global Spine Journal	GUDA vs ACDF (Single Level)	2. Safety and Efficacy (VAS, NDI, MOS- SF36, Neurological Success, <u>Aduetos</u> Events, Secondary Surgeries)	Number of Secondary Procedures	209	44	0.0099	1
Janssen et al. 2015	Journal of Bone and Joint Surgery	CDd.vs ACDF (Single Level)	7 year Safety and Ufficers(NDL SF-36, Neurological Parameters, Secondary Surgeries, Adverse Events, Neck/Arm Pain, Satisfaction	Number of Secondary Procedures	165	13	0.0099	
Lavelle et al. 2019	Spine	CUDA vs ACDF (Single Level)	10 year Overall Composite Success (NDI, Neurologic Status, Adverse Events, Reoperation, Failures)	Overall Success Rate	463	231	0.005	4
Loidels et al. 2021	Spine Journal	CDDAvs ACDF (Single Level)	URJame Adverse Events	Rate of All Adverse	463	229	0.012	112
Mucroy et al. 2009	Spine Journal	CUDA vs ACDF (Single Level)	2.ueur Clinical Safety and Efficacy (NDI, SF- 36, VAS, Composite Neurologic Success)	Neurologic al Success	209	7	0.046	1
Phillips et al. 2013	Spine	CODd vs ACDF (Single Level)	2.seag Safety and Efficacy (NDI, VAS, Neurological Status, Composite Overall Success)	deterioratio n of myslenathy	403	65	0.018	i i
Phillips et al. 2015	Spine	SUDA vs ACDF (Single Level)	Sates Safety and Efficacy (NDI, VAS, Neurological Status, Adverse Events, Reoperation, Fusion, Adjacent Segment Disease)	NDI Success	403	115	0.026	đ
Qisbilet al. 2016	Clinical Spine Surgery	CDDA vs ACDF (2 Non-contiguous Levels)	2.5 year Clinical and Radiographic Safety and Efficacy (JOA, NDI, Lordosis, Complications)	Rate of Adjacent Segment	30	0	0.04	
Suspet al. 2011	Journal of Bone and Joint Surgery	CODA vs ACDF (Single Level)	Success	Composite Overall Success	463	144	0.004	
Satulatib et al. 2017	European Spine Journal	CUDA vs ACDF (Single Level)	2-year.NDI	of Reoperatio	136	16	0.029	i
Yang et al. 2018	Orthopedics	Levels)	&Leposth Safety and Efficacy (NDI, JOA, VAS)	Rate of Adjacent Segment	96	16	<.05	į.
Zigles et al. 2013	Spine	CUDA vs ACDF (Single Level)	Succe Safety and Efficacy (NDI, VAS, SF-36, Neurological Exam, Device Success, Adverse Events, Satisfactien)	Rate of Secondary Surgery	209	76	0.0292	3

DISCUSSION

Overall, comparison suggests that the data regarding cTDA vs ACDF (median 1.5) is inherently more fragile than the totality of spine literature (median 2.0), despite the fact that cTDA vs ACDF studies comprise a substantial component (n=7, 17.5%) of this volume.^{1,3} This could indicate that there is only a very slight difference in outcome between ACDF and cTDA, leading the outcomes to appear fragile.

Indeed, the notion that ASD is higher in ACDF was refuted by a metaanalysis by Verma et al., which included many of the same trials as the current study, demonstrating no difference in rates of ASD.²¹ A powerful clinical argument to this point is that intervention is often strongly dictated by surgeon preference as it is universally agreed upon that patients do quite well with either option

Additionally, the loss of follow-up amounting to substantially greater than the >20% threshold suggested by Dettori et al. suggests that serious concerns are warranted with regards to study validity for cTDA vs ACDF literature.⁶ Said bias and study fragility likely contribute to discrepancies in outcomes between similar cTDA vs ACDF studies.

CONCLUSSION

The FI of CDA vs. ACDF literature is quite low and, therefore, fragile. The high average loss to follow-up raises concerns for significant result bias. Discordant outcomes between studies are likely be attributed to the low FIs and high losses to follow-up.

Sources Cited:

1. Evaniew N et al. *The Spine Journal*. 2015;15(10):2188-2197.

Dettori JR et al. *Global spine journal*. 2020;10(7):940-942.
Checketts JX et al. *JBJS*. 2018;100(12):e85

 Verma K. Spine (Phila Pa 1976). 2013;38(26):2253-2257.
Dettori JR, et al. Evidence-based spine-care journal. 2011;2(1):7-10

