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Abstract

Sample obfuscation is the widely studied, challenging problem of providing access
to a data sample while guarding aspects of its privacy. Sample obfuscation can
take different forms, including masking or redaction to protect sample variables
or anonymization or the methodology of differential privacy to secure individuals’
data records. This work extends the notion of sample obfuscation to obfuscation
of populations. Population obfuscation aims to protect information and features
of a whole statistical population of data, the population being represented by an
algorithm, formula, model, or sampling plan from which users can synthesize or
otherwise access unlimited numbers of data records. Canonical sample masking
can be extended to allow masking generally of functions of sample variables. With
this extension we present a conceptual framework for population masking, with
elementary examples of both canonical and general population masking. Three
procedures are outlined for masking a population, one based on transfer learning,
one on data augmentation, and one on optimal transport. We also introduce the
idea of inherent population masking and offer a simple class of examples in which it
occurs.

Key words: obfuscation, data privacy, masking, transfer learning, optimal trans-
port

1 Introduction

Data managers are often charged to share data samples that have proprietary or
sensitive elements—data entries, variables, or individuals’ whole records—whose
privacy must be maintained. Meeting these conflicting goals of data access and
privacy is a challenging sample obfuscation problem that has been broadly studied
from a variety of perspectives [1, 2, 3, 4].

Sample obfuscation is any technique intended to preserve the privacy of sample
data. Figure 1 shows samples of size n in standard format with columns represent-
ing variables Vk and rows containing data record entries xjk for units Uj . Sample
obfuscation can be aimed variously to directly protect units, variables, or entries.

∗Official contribution of the National Institute of Standards and Technology; not subject to copyright in
the United States.
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Figure 1: (a) A sample in standard format. (b) A set of sample units
(individuals) chosen for obfuscation. (c) A set of sample variables cho-
sen for obfuscation. (d) A set of sample entries chosen for obfuscation.

For example, differential privacy and anonymization are both intended to secure
the privacy of unit data records, redaction and masking are common techniques for
protecting variables [5], and individual entries can be protected by tokenization [6].
Figure 1 illustrates these different possible targets of sample obfuscation.

Beyond the obfuscation of finite samples of data lies the prospect of obfuscating
whole data populations of unlimited size. Increasingly sophisticated generative data
models are being built for research, simulation, training, and system testing. These
generative models, implemented by an algorithm, formula, or machine learning ar-
chitecture, allow users to synthesize at will an unlimited number of data records.
Managers of these generative models are challenged to make the models available
to disparate users while securing proprietary or sensitive elements of the population
represented by the generative model. Obfuscating an entire population of unlimited
size, rather than a fixed finite sample, presents data managers with a new challenge,
distinct from sample obfuscation.

Population obfuscation aims to protect the information and features of a whole
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statistical population of data. We focus on continuous populations1 and distin-
guish these populations from samples by size; samples are finite in size, continuous
populations are infinite. Then, the generative mechanism for a population can be
conceptualized as random drawings from a sample with an infinite number of units
(rows). Viewing the population as a sample with an infinity of units, we see that
unit privacy is inherently protected; in any finite number of random drawings from
the continuous population, any finite set of population units has zero probability
of being drawn and observed. Similarly, any finite set of entries, no matter the
entries’ natures or locations in the population, has zero probability of being drawn.
The privacy of individual units and entries in a continuous population is inherently
protected by the population’s infinite size; population variables are not similarly
protected, even when the number of variables is infinite. Population obfuscation is
fundamentally different in this sense from sample obfuscation.

The remainder of the paper is organized into five sections. Section 2 reviews sample
masking, with examples of both canonical and general sample masking. This review
sets the stage for population masking introduced in Sect. 3. There, the insights of
Sect. 2 are used to propose a mathematical framework for population masking. This
framework is explored in some simple examples and a population masking problem
is presented. Section 4 describes three approaches to this masking problem, and
Sect. 5 offers a time series example in which the population is inherently masked
by the nature of the time series and the variables chosen for masking. Section 6
summarizes this work and offers some final remarks.

2 Sample masking

Unit and entry privacy are inherently protected in a continuous population, so the
aim of population obfuscation is to secure population variables. Masking is a promi-
nent means to securing variables in samples, and the purpose of this work is to ex-
tend the idea of sample masking to populations. Variables explicitly present in the
sample are termed canonical variables, and in the literature sample masking means
masking one or more of these canonical variables [7, 8, 9, 10]. We term this form
of masking canonical masking and introduce general masking to refer to masking
variables which are non-trivial functions of the sample’s canonical variables. This
section reviews both forms of sample masking, canonical and general. This sets the
stage in the following section for a precise formulation of population masking.

We illustrate canonical masking using an example from human biometry. The data
for this example, shown in Fig. 2(a), consist of ten units (adult male individuals)
and three variables, height H, weight W , and age A. We wish to secure W in the
sample but otherwise make the data for (H,A) fully available. Here W is called a
marked variable (marked for masking) and H and A are the set of free variables.
Masking W means that we are willing to share the individuals’ joint distribution
of H and A in the sample. In particular, we are willing to share the association
between H and A. We are also willing to share the sample’s marginal distribution

1A continuous population is a population whose (multivariate) distribution is continuous. Such
populations are necessarily (uncountably) infinite in size. Moreover, any finite set of members of a
continuous population has zero probability of being observed.
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(b)

Figure 2: Canonical sample masking. (a) Data sample with weight
variable W (highlighted) marked for masking. (b) Data sample
with weight masked by sampling without replacement from W .

of W . Masking means that we do not want values of W to be traceable back to
the individuals from which they originated; equivalently, we are saying that (H,A)
identifies individuals, and we do not want to reveal the association between W and
(H,A).

To mask W in Fig. 2(a) we create a new data set, still with all ten units and all three
variables. We transfer the data for H and A without change into the new data set.
For the weight variable W ∗ in the masked data set, though, we randomly sample
without replacement from W in the original sample to fill the entries for W ∗ for the
ten individuals. The result is shown in Fig. 2(b). The masked data set has intact
both the marginal joint distribution of (H,A) and the marginal distribution of W .
Masking breaks the association of the masked variable with the rest of the sample
distribution; whatever association W and (H,A) had in the original data sample,
W ∗ and (H,A) will tend to be approximately independent in the masked sample.
In Fig. 2, for example, the correlation between H and W in the original sample is
0.86; between H and W ∗ in the masked sample, it is 0.06.

Body weight was masked in the biometry example in Fig. 2 using sampling with-
out replacement2. Instead, sampling with replacement could have been used; any
sampling scheme is allowed that preserves the marginal distribution of W while
rendering W independent of the free variables in the sample.3 Also, only weight
W was marked for masking. In general, any subset of sample variables can be
marked for masking. Masking multiple variables is accomplished by sampling the
marked variables according to some scheme that preserves their joint distribution
while rendering them independent of the remaining free sample variables. If the set

2Masking is often called swapping in cases where sampling without replacement is used.
3In practice, because of the random sampling involved in masking, we would not expect either

perfect preservation of W ’s distribution or complete independence of W and (H,A).

 
915



of marked variables and the set of free variables happen to be already independent
of one another in the original sample, we say the sample is inherently masked with
respect to the chosen marked variables.

The biometry sample in Fig. 2 in which body weight W was marked for masking
is an example of canonical masking; the variables H, W , and A in the originally
given sample are called canonical variables and the marked variable W is one of
them. We may want to mask variable(s) that are not present in the given sample
but, instead, are derived from them. For example, suppose we want to mask body
mass index B = W/H2, while sharing gross size S = HW and age A. The variable
B is a function of W and H, and masking variable(s) determined by a function of
the sample’s canonical variables is called general masking. Canonical masking is
a special case of general masking in which the derived marked variables and the
derived free variables trivially belong to the set of canonical variables.

The process of masking body mass index B in the biometry example is shown in
Fig. 3. In Step 1 in Fig. 3, we transform the sample’s canonical variables to make
explicit the variable B that we want to mask and the free variables S and A that we
want to share. This transformation g is called a marking map because it identifies
(marks) the variables to be masked and those to be shared. In Step 2 we mask B
in the transformed sample just as we would in canonical masking. Then, in Step
3 we transform the masked result back into a sample with variables H, W , and A.
This three-step process yields a sample with the original canonical variables H, W ,
and A but in which B is now close to independent of (S,A), as indicated by the
correlations in Table 1. Note that the entries for H and W in Fig. 3 have changed
from the original sample (a) to the masked sample (d). The purpose of masking is
not to preserve individual entries; its goal is to preserve the distributions of both
the marked and shared variables while rendering the two distributions independent.

Original sample Masked sample

corr(B,S) = −.46 corr(B∗, S) = −.01

corr(B,A) = .94 corr(B∗, A) = .15

Table 1: Correlations with the marked variable B in the
original sample and in the masked sample. The association
between B and (S,A) is reduced to close to zero by masking.

In our example of general sample masking in Fig. 3, the map g = (gx, gy) with

gx : (H,W,A) → B, gy : (H,W,A) → (S,A)

is invertible, allowing us in Step 3 of Fig. 3 to recover the original sample’s canonical
variables. Other marking maps g exist that could be used instead; for example,
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(a) Original sample
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24.1 134 39
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(b) Transformed sample
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(c) Canonically masked B

H W A

U10

U9

U8

U7

U6

U5

U4

U3

U2

U1

1.68 74.5 27

1.75 76.5 39

1.78 74.6 57

1.72 78.5 45

1.94 95.9 23

1.96 97.5 34

1.84 81.5 56

1.62 73.5 78

1.76 93.6 42

1.81 77.9 31

(d) General masking of B

Step 1: g

Step 2:

Canonical

masking

Step 3: g-1

Figure 3: General sample masking. Step 1 transforms the original sample (a) accord-
ing to an invertible map g which makes explicit in the transformed sample (b) the
variable B (highlighted) to be masked and the variables S and A to be shared. The
variable B is canonically masked in Step 2, yielding sample (c). Step 3 uses g−1 to
arrive at the desired result (d) in which the data set has its original form in terms of
H, W , and A, but now with B masked relative to the variables S and A to be shared.

general masking with g′ = (g′x, g
′
y) with

g′x : (H,W,A) → 1

B
, g′y : (H,W,A) → (S3,

√
A)

achieves the same result as with g. On the other hand, the map g′′ = (g′′x, g
′′
y ) with

g′′x : (H,W,A) → B, g′′y : (H,W,A) → (H,A)
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is invertible, but its effect is different; g separates B and (S,A) while g′′ separates
B and (H,A). A marking map’s key requirements are that it be invertible and that
it identify both the variables to be masked and the free variables to be shared.

3 Framework for population masking

We propose in this section a mathematical framework for population masking.
Within this framework we state a population masking problem for study. This
problem is non-trivial, yet practically solvable with sufficient resources.

3.1 Definitions

Marked population: A population with one or more variables marked for masking
is called a marked population (M⃗,M), where M is the population distribution and
M⃗ ∼ M is a generic member of the marked population. The marked variables in
(M⃗,M) can be canonical variables, originally present in (M⃗,M) or, more generally,
they can be functions of the population’s canonical variables. A population (M⃗,M)
is defined to be marked if a map g exists such that

g(M⃗) =

(
gx(M⃗)

gy(M⃗)

)
=

(
X⃗

Y⃗

)
. (1)

The map g is called the marking map for (M⃗,M); g identifies the variables X⃗ =
gx(M⃗) in (M⃗,M) that are to be masked and the variables Y⃗ = gy(M⃗) to be shared.
The population marking is canonical when g is just a reordering of the components
of M⃗ so that its first components gx(M⃗) are the marked variables and its other
components gy(M⃗) are the free variables. The marking map for a population with
a given set of marked variables is not unique; gx and gy, though, must be such that

g is invertible. For general marking maps g, the random vectors X⃗ = gx(M⃗) and
Y⃗ = gy(M⃗) are typically dependent. When they are independent, we say the marked

population (M⃗,M) is inherently masked with respect to the marked variables in X⃗.

Masked population: A population (T⃗ , T ) is a masking of a marked population
(M⃗,M) with marking map g if there exist random vectors H⃗ and Y⃗ such that4

T⃗
d
= g−1

(
H⃗

Y⃗

)
, (2)

where H⃗ and X⃗ = gx(M⃗) have the same distribution and where H⃗ and Y⃗ = gy(M⃗)

are independent. A masked population (T⃗ , T ) is equivalently the counterpart a
marked population (M⃗,M) with marking map g if

T⃗
d
= g−1

(
gx(M⃗)

gy(M⃗
′)

)
, (3)

4The notation
d
= means equal in distribution.
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where M⃗ and M⃗ ′ are two members drawn independently from the marked population
(M⃗,M). We call a map h : M⃗ → T⃗ that maps the marked population (M⃗,M) to
the target population (T⃗ , T ) a masking map. Like the marking map g, the masking
map h for (M⃗,M) is not unique.

3.2 A population masking example

To illustrate population masking’s definitions (2) and (3), we present an example of
a trivariate marked population (M⃗,M). Suppose M⃗ is uniformly distributed within
the unit cube

Q = {(m1,m2,m3) : 0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 1, 0 ≤ m3 ≤ 1}.

For m⃗ = (m1,m2,m3) ∈ Q, radial distance of m⃗ from the origin is

r =
√
m2

1 +m2
2 +m2

3,

and its associated azimuthal and polar angles are

θ = Tan−1m2

m1
, ϕ = Tan−1 m3√

m2
1 +m2

2

.

Suppose we want to mask radial distance R of members of (M⃗,M) but are otherwise
willing to share the joint distribution of the angles Θ, Φ. This is an example of
general masking because R is a nontrivial function of the population’s canonical
variables M1, M2, and M3. An invertible marking map (1) for this purpose has

gx(M⃗) =
√
M2

1 +M2
2 +M2

3 , gy(M⃗) =

(
Tan−1M2

M1

Tan−1 M3√
M2

1+M2
2

)
,

where M⃗ = (M1,M2,M3). Define the random vector

S⃗ =

(M2
1 +M2

2 +M2
3 )

1/2

Tan−1M2
M1

Tan−1 M3√
M2

1+M2
2

 ,

where M⃗ ∼ M, and let S be the distribution of S⃗. Corresponding to S is the
distribution So defined by the random vector

S⃗o =

(M ′2
1 +M ′2

2 +M ′2
3 )1/2

Tan−1M2
M1

Tan−1 M3√
M2

1+M2
2

 ,

where M⃗ ′ ∈ M is another member of the marked population drawn independently of
M⃗ . According to (3), the inverse mapping g−1 applied to the distribution So yields
the target masked population T . Members of (T⃗ , T ) carry the same (marginal and
joint) distributional information about angles and the same distributional informa-
tion about radial distance as (M⃗,M). In (T⃗ , T ), though, the association between
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angles and radial distance in M is no longer present. Radial distance in T is inde-
pendent of the angles, and the radial distance of each population member T⃗ ∼ T
is masked. Each member of T has a radial distance—it can be calculated from the
components of T⃗ ∼ T —but this radial distance comes as if from another indepen-
dently drawn population member T⃗ ′ ∼ T .

The marked variable R is masked in this example and the angles Θ and Φ are
free. However, we could just as well have made R free and designated (Θ,Φ) to
be masked. The result would be the same. Masking is mathematically symmetric
in its treatment of the sets of marked and free variables; the effect of masking is
to break the statistical association between the two sets while preserving the joint
distribution of each set of variables.

3.3 A class of bivariate masking examples

An accessible class of examples of population masking is the two-dimensional case
in which the marked population (M⃗,M) has the bivariate normal distribution

M = N (⃗0,ΣM), ΣM =

(
σ2
1 0
0 σ2

2

)
=

(
ρ 0
0 1/ρ

)
(4)

and the marking map g :M⃗ → S⃗ is linear, determined by a unitary rotation S⃗ = UM⃗ .
Here,

M⃗ =

(
M1

M2

)
, S⃗ =

(
X
Y

)
,

the unitary matrix U is

U =

(
cos γ sin γ
− sin γ cos γ

)
,

and the marked variable X in S⃗ is X = M1 cos γ + M2 sin γ. This example of
general masking has two parameters, the rotation angle γ associated with g and the
elongation ρ = σ1/σ2 of the ellipse associated with the marked distribution M. The
distribution S of S⃗ is normal with zero mean and covariance matrix ΣS = UΣMU⊤.
Some calculation yields5

ΣS = ΣM − ν sin γ

(
sin γ cos γ
cos γ − sin γ

)
. (5)

The distribution So is the counterpart of S with the same marginal distributions as
X and Y in S, but in So these marginal distributions are independent. Therefore,
So is normal with zero mean and, from (5), covariance matrix

ΣSo = ΣM − ν sin2 γ

(
1 0
0 −1

)
.

The target masked distribution T corresponding to M is normal with zero mean
and covariance matrix ΣT = U⊤ΣSoU, so

T = N (⃗0,ΣT ), ΣT =
1

2
ΣM +

µ

4
I+

ν

4

(
cos 4γ sin 4γ
sin 4γ − cos 4γ

)
. (6)

5We use the notations µ = ρ+ 1/ρ and ν = ρ− 1/ρ.
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The distributions M and T are shown in Fig. 4 along with that of the bivariate
standard normal distribution Z = N(⃗0, I) for two different combinations of the
parameters ρ and γ.

In population masking the marking map g maps the marked distribution M to
the distribution S in which the marked variables X⃗ and the free variables Y⃗ are
dependent (unless M is inherently masked). A masking map h :M⃗ → T⃗ transports
M to the target distribution T in which the marked variables X⃗ and the free
variables Y⃗ are independent. In the present bivariate example a linear masking
map h from M⃗ ∼ M to T⃗ ∼ T can be found from optimal transport theory. This
map is of the form T⃗ = VM⃗ where

V =
√
ΣT Σ

−1
M =

√
ζ
√
ζ + 2

2
√
2

I+

√
ζ − 2

2
√
2
√
ζ

(
−µ sin 2γ 2ρ cos 2γ
2
ρ cos 2γ µ sin 2γ

)
(7)

with ζ =
√

4 + ν2 sin2 2γ. The masking map h : M⃗ → T⃗ defined by T⃗ = VM⃗
with V in (7) is the map that ”moves” M to T in such a way as to minimize the
earth-mover (EM) distance between them.

3.4 A population masking problem

A marked population (M⃗,M) is readily masked if sufficient appropriate information
is available. For example, suppose both (M⃗,M) and a marking map g are known.
Then, in principle, according to either definition (2) or (3), the target masked pop-
ulation (T⃗ , T ) can be constructed without error. By this we mean that there is a

Bivariate standard

normal population

ρ = 2.5

Marked

population

γ = 15°

Masked target

population

Bivariate standard

normal population

ρ = 2.5

Marked

population

γ = 35°

Masked target

population

Figure 4: Bivariate normally distributed marked and masked
populations M and T along with the default bivariate stan-
dard normal distribution Z = N(⃗0, I) for two different com-
binations of elongation ρ = 2.5 and rotation γ = 15◦, 35◦.
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procedure that will generate members T⃗ from the masked population distribution
T . For example, if both M and g are known, then according to (3) one would draw
two members M⃗ , M⃗ ′ independently from M, calculate X⃗ = gx(M⃗) and Y⃗ = gy(M⃗

′),

and use the inverse of g to obtain T⃗ ∼ T . This procedure can be repeated to obtain
an unlimited number of observations from the masked population (T⃗ , T ).

A more interesting problem arises when the marking map g is unavailable. This
might happen, for example, if the determinative data authority does not want to
so transparently identify the population variables it deems sensitive. Possibly, all
that is available are samples of data SM and ST from M and T —in particular, g is
unknown or unavailable. This may be the case with archived data collected for one
purpose but now being considered for a new purpose. If the sample ST of target
data is large enough, then the target population T can be modeled by any of various
procedures, and the model T̂ can be used to generate masked observations T⃗ ∼ T̂ .
But suppose that the sample ST is not large and, indeed, that it is so small that an
estimate T̂ of the masked population cannot be constructed with satisfactorily small
error. Of course, a sample ST of some size must be given because in the absence of
g some information has to stand in for the unknown marked population variables.
If ST is too small, data must be found elsewhere to aid in constructing T̂ . These
other data may come in the form of a sample SM from the marked population.
These data are just the data that the data authority does not want to reveal, so the
statistician tasked with constructing T̂ must have the authority’s trust. And the
sample SM must be relatively large—large enough that SM and ST together can
support an estimate T̂ with satisfactorily small error.

The preceding line of thought suggests the following population masking problem.
Suppose we are give a sample ST from the target masked population and a sample
SM from the marked population, and we want an estimate T̂ of the target population
distribution T ; in other words:

Problem: given samples ST and SM, estimate T . (8)

No other information is available for (8); in particular, the marking map g is not
known. We want an estimate T̂ of the target population T with small estimation
error d(T̂ , T ). Problem (8) is interesting when 1) the size NT of ST is small, too
small by itself to meet the goal for the allowed error d(T̂ , T ), and 2) the size NM of
SM is large, large enough to successfully estimate T . The following section explores
different approaches to (8).

The population masking problem in (8) posed above is just one of many possible, de-
pending on the scenario under consideration. Any meaningfully formulated problem,
though, must address two concerns. First, of course, information must be available
in some form to in some way estimate the target population T . This estimation
might be accomplished either directly by some means or indirectly by, for example,
first estimating one or the other of the masking and marking maps, g or h. Problem
(8) addresses this first concern in the simplest way by supposing a random sample ST
from T is given. Second, estimating the multivariate population T demands some
sufficient amount of data, either data ST directly from T or data from a different
source that can augment ST . The problem we pose supposes that a large sample
SM is available from the marked population M. This large sample addresses the
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concern for a large amount of data. Different population masking problems might
be posed, and their solutions will entail different solution approaches. The following
section lays out three approaches for the masking problem in (8).

4 Three approaches to population masking

We describe three approaches to the population masking problem in (8) posed in the
previous section, one based on data augmentation, one based on optimal transport,
and one based on transfer learning. Each approach assumes that we have a relatively
large sample SM from the marked population and only a small sample ST from the
target, masked population.

Two of our three approaches described below involve generative adversarial networks
(GANs). A GAN is a generative model introduced by Goodfellow et al. [11, 12] in-
volving two artificial neural networks (ANNs), a generator Gθ and a discriminator
Dϕ, where θ and ϕ are the ANNs’ weight vectors. These two ANNs are trained si-
multaneously, with the one pitted against the other, in an iterative fashion according
to a combined loss function L(θ, ϕ). At each iteration the generator presents learned
examples to the discriminator, and the discriminator attempts to correctly identify
these learned examples from among a pool of training examples. The discriminator
reports its successes and failures back to the generator, each network updates its
weights based on the discriminator’s successes and failures, and a new iteration be-
gins. At each iteration the generator is trying to mislead the discriminator, and the
discriminator is trying to avoid being misled. After enough iterations, the generator
and discriminator approach a game-theoretic equilibrium where the discriminator
cannot distinguish between synthesized examples and training examples any better
than guessing. At this equilibrium the GAN generator is trained and ready for use.

4.1 Data augmentation approach

Our population masking problem specifies that we have a sample ST from the target
population but that ST is not sufficiently large by itself to construct an estimate T̂
to within the allowed error d(T̂ , T ). Insufficient training data is a common problem
in machine learning model training, and data augmentation schemes have been
proposed for different settings to use data related to the training data to aid model
training [13, 14, 15, 16, 17, 18].

The sample ST in our masking problem is insufficient by itself to estimate T . The
sample SM is large, though, and SM is similar to ST in important respects; SM and
ST come from populations with the same marginal distribution of free variables and
the same marginal distribution of marked variables. We propose as illustrated in
Fig. 5 to use the data in SM to augment ST for training a GAN. In Fig. 5 the sample
ST provides the training data for the GAN. Usually, a GAN is trained with and its
generator is driven by white noise Z, Z being typically the distribution of a vector of
independent standard uniform or standard Gaussian variables. We propose, instead,
to estimate the marked distribution M from SM and use the estimate M̂ as the
GAN generator’s source.

The intuition behind Fig. 5’s data augmentation approach is illustrated in Fig.
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6. If the distance d(M, T ) in Fig. 6 is smaller than the distance d(Z, T ), and if
the metrical distance d well-reflects the distance reduction that might otherwise
be gained by a larger training sample ST , then ST could be augmented by SM to
good effect. If the distance d(M, T ) is not smaller than d(Z, T ), using M to solve
problem (8) may actually be counterproductive.

 

GAN

generator

discriminator

ℳ

Use M to estimate ℳ .

Use ℳ as generator input to augment 

Figure 5: A data augmentation approach to the popula-
tion masking problem. The small sample ST available for
training the GAN is augmented by driving the GAN gen-
erator with data from the marked population estimate M̂.

M

Z

T

d(M,T)

d(Z,T)

Driving GAN withM may help

Z

M

T

d(Z,T)

d(M,T)

Driving GAN withM may not help

Figure 6: Relative distances of a marked population distribution M
and a multivariate standard normal distribution Z to a target masked
distribution T . The left panel shows M closer than Z to T , in which
case driving a GAN generator withMmay be advantageous. The right
panel shows Z closer to T , in which case M may offer no advantage.
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To see how the distances d(M, T ) and (d(Z, T ) in Fig. 6 might actually compare,
consider the class of examples in Subsect. 3.3. In these examples both the marked
distribution M in (4) and the target, masked distribution T in (6) are bivariate
normal. The default latent distribution Z ∼ N (⃗0, I) is also bivariate normal. The
distances separating M, Z, and T can be measured in different ways. The EM
distance separating two zero-mean multivariate normal distributions D1,D2 with
common dimension k and respective covariances Σ1,Σ2 is

d(D1,D2) = trΣ1 + trΣ2 − 2tr
[
(Σ

1/2
1 Σ2Σ

1/2
1 )1/2

]
. (9)

In terms of Kullback-Leibler divergence the same separation is

d(D1,D2) =
1

2
log

|Σ1|
|Σ2|

− k

2
+ tr

[
Σ−1
1 Σ2

]
, (10)

and in terms of Hellinger distance it is

d(D1,D2) =

√√√√1−

√
|Σ1|1/4|Σ2|1/4

|12Σ1 +
1
2Σ2|1/2

. (11)

Figure 7 shows by the measures (9), (10), and (11) the distances d(M, T ) and
d(Z, T ) for the bivariate normal examples in Subsect. 3.3 with elongation ρ = 2.5
and rotations in the interval γ ∈ [0◦, 90◦]. In this class of examples with any of
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Figure 7: Distances d(M, T ) (blue curves) and d(Z, T ) (red curves)
from the marked distribution M and a bivariate standard normal
distribution Z to the target masked distribution T for the class of
bivariate normal examples with elongation ρ = 2.5 in Subsect. 3.2.
The same generic qualitative differences in the separations are seen
with any of EM distance, K-L divergence, or Hellinger distance.
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these measures of separation, we see generically for small rotations γ that M is
closer to T , while for bigger rotations approaching 45◦, Z is closer. There is an
intuition for this. When γ is small, M is closer to T because M and T have the
same marginal distributions; on the other hand, Z and T both have independent
marginal distributions, and that shared feature comes to matter more when the large
rotation γ distorts the marginal distributions. Of course, in the end what matters
for solving problem (8) is the estimation error d(T̂ , T ) and how that depends on the
starting points M and Z as γ varies. Experiments are underway to see whether the
estimation error associated with T̂ behaves in accordance with the intuition offered
here.

4.2 Optimal transport approach

The theory of optimal transport began with Monge [19] in 1781 and was given a
probabilistic reformulation by Kantarovich [20] in 1942. Villani and Peyre survey
modern developments in the theory in [21, 22, 23, 24]. This theory’s key point is that
while there are many ways to transform one probability distribution into another,
there is a unique map that does so optimally in the sense of earth-mover distance.
Significantly, powerful numerical algorithms are available [23, 25, 26] to estimate
the optimal transport map T : D1 → D2 between two distributions D1, D2 from
samples SD1 , SD2 from those distributions.

Our optimal transport approach to problem (8) depends on estimating the optimal
transport map T from M to T . The specific steps in this approach are shown in
Fig. 8. The blue panel in Fig. 8 shows the optimal map T that exists from M to T .

ℳ 



Populations and OT map 
ℳ 



Estimate 

ℳ ℳ


Estimate ℳ

Estimate optimal (EMD) transport map  and marked population ℳ .

Then = (ℳ ).

ℳ







Estimate  by (ℳ )

Figure 8: An optimal transport approach to the population masking
problem. According to this approach an optimal transport map T
exists (blue panel) that maps the marked population M to the target
population T . Both T and M are estimated (yellow panel) from the

two available data samples SM and ST . These estimates T̂ and M̂
are used to estimate (red panel) the target population distribution T .
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Both T and M are estimated (yellow panel) from the two available data samples
SM and ST . These estimates T̂ and M̂ are used to form an estimate T̂ = T̂(M̂)
(red panel) of the target population distribution T , solving the population masking
problem in (8).

4.3 Transfer learning approach

Transfer learning is a procedure in which a model developed for one task is used as
the starting point for training a model with the same architecture on a second task
[27, 28]. More specifically, a base model is trained on a base training sample and
task, and the learned features (base model parameter estimates) are repurposed,
or transferred, to a second target model. These transferred features are used by
the second model as starting values for training on a different training sample and
target task. This process will tend to aid the second model on its target task to the
degree that features learned by the base model are general to both the base and the
target tasks, rather than specific to just the base task.

In our application of transfer learning to the population masking problem in (8),
the base task is set to be a generative model for M trained with SM and the target
task is set to be a generative model for T trained with ST . In Fig. 9 the base and
target tasks for this learning transfer are shown (blue and yellow, resp.) with GANs
as the generative models. In this application of transfer learning, we have only the
limited data in ST to train GAN2. The limited size of ST may require a nuanced
approach to training GAN2 in which not all the weights in GAN2 are updated [29].
For example, it may be more effective to fix the weights in the earlier layers of
GAN2 to be those from GAN1 and only use ST to update the weights in GAN2’s
later layers.

M ℳ

GAN1

generatorG1

discriminator D1

Z

 

GAN2

generatorG2

discriminator D2

Z
Transfer

learning

Start with (G1,D1) learned in GAN1 to learn (G2,D2) in GAN2

Figure 9: A transfer learning approach to the population masking prob-
lem. This approach involves two GANs, GAN1 and GAN2. The sample
SM from the marked population M is used to train GAN1 (blue) to
approximate M. The discriminator and generator parameters of GAN1

learned in this process are transferred to GAN2 (yellow) and used there
as initial values for training GAN2 with the target data sample ST .
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4.4 Hybrid approaches

The three just-described approaches to the population masking problem in (8) can be
combined in different ways to create hybrid approaches. For example, the masked
population distribution T estimated by T̂ = T̂(M̂) in the optimal transport ap-
proach could be used instead of M̂ as a data generator in the data augmentation
approach to drive the GAN. This hybrid approach is diagrammed in Fig. 10. This
approach is interesting because it uses the data in ST twice: first, to estimate the op-
timal transport map T and then, second, as training data for the data augmentation
approach’s GAN. Experiments will show whether this hybrid can out-perform the
data augmentation and optimal transport approaches from which it is constituted.

5 Inherent masking

A marked population (M⃗,M) with marking map g is inherently masked if its sets
of marked variables X⃗ = gx(M⃗) and free variables Y⃗ = gy(M⃗) happen to be ab
initio stochastically independent. We give a simple example of inherent masking in
a bivariate population and then generalize the example to the interesting class of
univariate frequency-marked moving-average time series.

Bivariate example: Suppose M is defined by the random vector M⃗ = UN⃗ where
N⃗ ∼ N(⃗0, I) is a two-component standard Gaussian noise and

U =
1

1− x2

(
1 x
x 1

)
, (12)

where x ∈ [−1, 1]. The components of M⃗ can be considered a two-observation
moving average time series in which each observation Mk is the corresponding latent

 

GAN

generator

discriminator



=

(ℳ

)

Estimate  by 

= (ℳ ). Use 


as

generator input to augment 

Figure 10: A hybrid approach to problem (8) that finds T̂ =

T̂(M̂) by our optimal transport approach, while training a
GAN with ST and using T̂ to drive the GAN generator.
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variable Nk plus/minus some fraction x of the ”preceding” latent variable [30]. This
time series M⃗ is distributed M⃗ ∼ N(⃗0,ΣM) with unit-determinant covariance

ΣM = UIUT =
1

(1− x2)2

(
1 + x2 2x
2x 1 + x2

)
. (13)

Suppose that the marked information in M is contained in one of its Fourier fre-
quencies. Then the marking map g is linear, defined by g(M⃗) = FM⃗ , where F is the
discrete Fourier transform (DFT) matrix. The DFT matrix F for an N -component
time series is F = [ω(j−1)(k−1)] for j, k = 1, ..., N with ω = exp(−2πi/N). In the
present two-dimensional example,

F =
1

2

(
1 1
1 −1

)
, (14)

and S⃗ = FM⃗ is normally distributed S⃗ ∼ N(⃗0,ΣS) with covariance

ΣS = FΣMFH =
1

2

(
(1− x)2 0

0 (1 + x)2

)
. (15)

The two components of S⃗ are the Fourier frequencies of the time series M⃗ . The off-
diagonal entries of ΣS are zero, so the Fourier frequencies are independent, and the
frequency-marked information in M is inherently obfuscated; no action is required
to mask whichever frequency is identified as the marked population variable.

Moving average time series: The preceding example generalizes to Gaussian
moving-average time series of any length and parametric structure. We now show
that, for any univariate time series in this class, marked information composed of
any subset of Fourier frequencies is inherently obfuscated. Let M⃗ be a univariate
N -observation Gaussian moving-average time series [30]. Then M⃗ = RN⃗ , where
N⃗ ∼ N(⃗0, I) is an N -component standard Gaussian noise, and R is the matrix

R = a0I+
N−1∑
k=1

akQ
k, (16)

where Q is the cyclic shift matrix

Q =

(
0⃗T 1

I 0⃗

)
. (17)

The zero vector 0⃗ and the identity matrix I in (17) are (N − 1)-dimensional and
(N − 1)× (N − 1)-dimensional, respectively. Let the marked population M be the
time series represented by M⃗ = RN⃗ , and suppose M is frequency-marked with
marking map defined by S⃗ = FM⃗ where F is the N -point DFT matrix. Then
S⃗ = FM⃗ is normally distributed S⃗ ∼ N(⃗0,ΣS) with covariance ΣS = FΣMFH.
Denote the rows of F by Fk. These rows are orthogonal, FiF

H
j = 0 for i ̸= j. We

have as well (FiQ)(FjQ)H = 0 for i ̸= j since Q cyclically shifts the entries of both
Fi and Fj in tandem. We have, too, the identity (FiQ

k)(Fj)
H = 0 for i ̸= j and any
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k = 1, ..., N − 1 [31, 32]. Therefore,

(FiR)(FjR)H = FiRRTFH
j

= Fi

(
N−1∑
k=0

akQ
k

)(
N−1∑
m=0

am(Qm)T

)
FH
j

=
N−1∑
k=0

N−1∑
m=0

akamFiQ
k(Qm)TFH

j

=
N−1∑
k=0

N−1∑
m=0

akam(FiQ
k)(FjQ

m)H.

This shows that (FiR)(FjR)H = 0 for i ̸= j, from which it follows that

ΣS = FΣMFH = FR(FR)H (18)

is diagonal. All of the off-diagonal entries in ΣS are zero, meaning that the Fourier
frequencies of M⃗ are mutually independent; in particular, the marked variables in
M composed of any subset of frequencies is independent of the remaining shareable
frequencies, and M marked in this way is inherently obfuscated.

6 Summary and final remarks

This work extends the notion of sample obfuscation to population obfuscation. In
the infinite-size populations studied here, population units and entries are naturally
secured by the population’s size, so the security of a population’s variables is of most
interest. Masking is a prominent form of obfuscation for sample variables, and we
made population masking this work’s primary focus.

Our extension of sample masking to population masking led us specifically to con-
sider population masking as a task, with (at least) three different possible approaches
to its accomplishment. We have experiments underway to discover each of these ap-
proaches’ potential in terms of data sample sizes NT and NM and the estimation
error d(T̂ , T ) that results. An important metrological question is the appropriate
metric d(·, ·) for representing error in the setting of population masking. Poten-
tial metrical candidates are the Hellinger, p-Wasserstein, total variation, and Bhat-
tacharya distances [33] and the Kullback-Leibler divergence. Experiments designed
to compare the suitabilities of these measures are currently underway.

We noted at the end of Subsect. 3.2 that population masking does not asymmet-
rically privilege marked variables over free variables; the labeling is arbitrary and
”marked” and ”free” are interchangeable with no effect. Therefore, the ideas of
population masking extend without modification beyond separating two groups of
population variables to separating any number of groups. For example, in the last
section’s example of an N -observation moving average time series, we might be
tasked to jointly mask all N of the Fourier frequencies from one another. We saw
in that example that the Fourier frequencies are jointly independent, so we would
find that that time series population is inherently masked even then.
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