
Automatic Relation-aware Graph Network Proliferation
Shaofei Cai1,2, Liang Li1, Xinzhe Han1,2, Jiebo Luo3, Zhengjun Zha4, Qingming Huang1,2,5

1. Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS, Beijing, China 
2. University of Chinese Academy of Sciences, Beijing, China, 3. University of Rochester

4. University of Science and Technology of China, China, 5. Peng Cheng Laboratory, Shenzhen, China 

1. Abstract
We propose Automatic Relation-aware Graph Network Proliferation
(ARGNP) for efficiently searching GNNs with a relation-guided 
message passing mechanism. 
The main contributions are summarized as follows:
1. We devise a novel dual Relation-aware GNN Search Space that 
comprises both node and relation learning operations. These 
operations can extract hierarchical node (relational) information and 
provide anisotropic guidance for message passing on a graph. 
2. We design a Network Proliferation Search Paradigm to 
progressively determine the GNN architectures by iteratively 
performing network division and differentiation.

2. Relation-aware GNN Search Space
node-learning operations
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1. Node-learning operations 
implement the anisotropic 
message aggregation under the 
guidance of relation features.

4. Ablation Study on Search SpaceTable 1. Comparison with state-of-the-art architectures on the CLUSTER, ZINC, CIFAR10 and TSP datasets. m� denotes the
architecture is mannually designed. The indicator E denotes whether the architecture can learn edge feature. The ARGNP without edge
feature means that the relation space is removed from relation-aware graph search space. Note that mean and standard deviation are
computed across 4 independently searched GNN architectures.

Node Level Graph Level Edge Level

Architecture CLUSTER ZINC CIFAR10 TSP

E Metric Params Search Metric Params Search Metric Params Search Metric Params Search
2� (AA %) " (M) (day) (MAE) # (M) (day) (OA %) " (M) (day) (F1) " (M) (day)

GCN [29] ⇥ 68.50±0.98 0.50 m� 0.367±0.011 0.50 m� 56.34±0.38 0.10 m� 0.630±0.001 0.10 m�
GIN [59] ⇥ 64.72±1.55 0.52 m� 0.526±0.051 0.51 m� 55.26±1.53 0.10 m� 0.656±0.003 0.10 m�
GraphSage [21] ⇥ 63.84±0.11 0.50 m� 0.398±0.002 0.51 m� 65.77±0.31 0.10 m� 0.665±0.003 0.10 m�
GAT [53] ⇥ 70.59±0.45 0.53 m� 0.384±0.007 0.53 m� 64.22±0.46 0.11 m� 0.671±0.002 0.10 m�
GatedGCN [9] X 76.08±0.34 0.50 m� 0.214±0.013 0.51 m� 67.31±0.31 0.10 m� 0.838±0.002 0.53 m�
PNA [15] ⇥ N/A N/A N/A 0.320±0.032 0.39 m� 70.46±0.44 0.11 m� N/A N/A N/A
PNA [15] X N/A N/A N/A 0.188±0.004 0.39 m� 70.47±0.72 0.11 m� N/A N/A N/A
DGN [5] ⇥ N/A N/A N/A 0.219±0.010 0.39 m� 72.70±0.54 0.11 m� N/A N/A N/A
DGN [5] X N/A N/A N/A 0.168±0.003 0.39 m� 72.84±0.42 0.11 m� N/A N/A N/A
GNAS-MP [12] ⇥ 74.77±0.15 1.61 0.80 0.242±0.005 1.20 0.40 70.10±0.44 0.43 3.20 0.742±0.002 1.20 2.10

ARGNP (2) ⇥ 61.61±0.27 0.07 0.04 0.430±0.003 0.09 0.01 66.55±0.13 0.10 0.11 0.655±0.003 0.09 0.05
ARGNP (4) ⇥ 64.06±0.45 0.14 0.07 0.303±0.013 0.14 0.01 66.65±0.39 0.18 0.14 0.668±0.003 0.17 0.06
ARGNP (8) ⇥ 68.73±0.12 0.25 0.20 0.239±0.009 0.27 0.02 67.37±0.32 0.33 0.48 0.674±0.002 0.29 0.21
ARGNP (16) ⇥ 71.92±0.29 0.53 0.71 0.221±0.004 0.51 0.06 67.10±0.51 0.58 1.77 0.684±0.002 0.56 0.76

ARGNP (2) X 64.99±0.31 0.08 0.06 0.318±0.009 0.08 0.01 69.14±0.30 0.10 0.17 0.773±0.001 0.08 0.08
ARGNP (4) X 74.75±0.25 0.15 0.09 0.197±0.006 0.15 0.01 71.83±0.32 0.17 0.23 0.821±0.001 0.14 0.10
ARGNP (8) X 76.32±0.03 0.29 0.31 0.155±0.003 0.28 0.04 73.72±0.32 0.33 0.84 0.841±0.001 0.30 0.39
ARGNP (16) X 77.35±0.05 0.52 1.10 0.136±0.002 0.52 0.15 73.90±0.15 0.64 2.95 0.855±0.001 0.62 1.23

decay 3 ⇥ 10�4. We use Adam [28] as the optimizer for
↵, with initial learning rate ⌘↵ = 3 ⇥ 10�4, momentum
� = (0.5, 0.999) and weight decay 10�3.
Training settings. We follow all the training settings (data
splits, optimizer, metrics, etc.) in work [12, 17]. Specifi-
cally, we adopt Adam [28] with the same learning rate decay
for all runs. The learning rate is initialized with 10�3, which
is reduced by half if the validation loss stops decreasing af-
ter 20 epochs. The weight decay is set to 0. The dropout is
set to 0.5 to alleviate the overfitting. Our architectures are
all trained for 400 epochs with a batch size of 32. We report
the mean and standard deviation of the metric on the test
dataset of 4 discovered architectures. These experiments
are run on a single NVIDIA GeForce RTX 3090 GPU.

4.2. Results and Analysis
In Table 1 and Table 2, we compare our ARGNP with

the state-of-the-art hand-crafted and search-based GNN ar-
chitectures on the CLUSTER, ZINC, CIFAR10, TSP, Mod-
elNet10, and ModelNet40 datasets. The evaluation metric
is the average accuracy (AA) for CLUSTER, mean abso-
lute error (MAE) for ZINC, F1-score (F1) for TSP. For CI-
FAR10, ModelNet10, and ModelNet40, we use the over-
all accuracy (OA) as the evaluation metric. To make a
fair comparison, we also report the architecture parame-
ters, the search cost, and the mean and standard deviation
of all the metrics. We can see that, on all the six datasets
for four classical graph learning tasks, the GNN architec-

tures discovered by our ARGNP surpass the state-of-the-
art architectures by a large margin in terms of both mean
and standard deviation. Compared with the state-of-the-
art search-based method GNAS-MP [12], our searched ar-
chitecture can easily achieve better performance with only
1
10 ⇠

1
4 parameters. This benefits from that the relation-

aware graph search space can mine hierarchical relation
information (such as local structural similarity) to guide
anisotropic message passing. Moreover, the network pro-
liferation search paradigm can efficiently and effectively
explore the proposed search space. We visualize the best-
performed GNN architecture with the size of 4 in Figure 5,
which is searched on the ModelNet40 dataset. Other exam-
ples are provided in the supplementary material.

4.3. Ablation of Search Space
We study the influence of the relation search space in

our proposed relation-aware graph search. First, we con-
struct a search space variant by removing the relation search
space. Then we perform GNN architecture search on this
variant using the network proliferation search paradigm and
obtain a sequence of GNN architectures with the size of
{2, 4, 8, 16}. These GNN architectures are evaluated on six
datasets. For a fair comparison, we increase the dimension
of the node features to keep the architectural parameters
comparable. As shown in Table 1 and Table 2, the best
performance of the search space variant without relation
learning descends by a large margin. Under all the differ-

6

1. Mining relational information can significantly 
improve the GNN’s reasoning ability. 

2. Searching with relation-aware GNN search space 
achieves higher performance with fewer parameters.

3. Network Proliferation Search Paradigm
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Figure 3. Illustration of network proliferation search paradigm. It comprises two procedures of network divison and differentiation.
The edges with different colors are associated with different operations. A group of dashed edges denotes a mixture operation. A local
supernet comprises of three mixture operations pointing to one feature vertex. (i) denotes the i-th iteration.

Relation search space. The computation structure de-
rived by relation search space is also a directed acyclic
graph with the same number of vertices. Each vertex Ei

is a latent relation representation (i.e., edge features in a
GNN layer, as shown in the right of Figure 2). The directed
link (i, j) in the DAG is associated with a relation-mining
operation o(i,j)

E
. It extracts relational information from

node features Vi. The extracted information is joined with
Ei to obtain higher order relation representation Ei!j =

o(i,j)
E

(Vi,Ei, hi,j). hi,j is a relation-mining function, such
as substraction, hardmard product, gauss kernel, etc. Given
a specific edge (s, t) on the graph, Es,t

i!j can be computed
using feature-wise linear modulation (FiLM):

Es,t
i!j = �s,t �Es,t

i + �s,t,

�s,t,�s,t = hi,j(V
s
i ,V

t
i ;✓),

(2)

where �s,t,�s,t is the affine transformation learned by hi,j ,
✓ is the learnable parameters. This allows adaptive rela-
tional information fusion. Similar to node search space,
we assume that each intermediate vertex has and only has
two inputs, i.e., Ei = Ep1!i + Ep2!i, where p1, p2 2

{in0, in1, 1, 2, · · · , i � 1}. Different relation-mining oper-
ations focus on extracting different types of relational in-
formation. For example, substraction captures the relative
change while hardmard product emphasizes on the com-
monalities between the edge-connected nodes. The relation
search space has 8 candidate relation-mining operations:
E SUB, E GAUSS, E HAD, E MAX, E SUM, E MEAN,
skip-connect, and zero operation. Eight candidate options
of the relation-mining function are detailed in the supple-
mentary material.

3.3. Network Proliferation Search Paradigm
We detail how the proposed network proliferation search

paradigm explores a single search space (e.g., node or rela-

Algorithm 1 Network Proliferation Search Paradigm
Input: a search algorithm A, architecture size S

Output: a graph neural architecture defined by {V,L}
Define: e(Xs, Xt, O) is a link from Xs to Xt with an

operation O, where O 2 {o, ō}, ō is the mixture operation
1: V {X1}

2: L {e(Xin0 , X1, ō), e(Xin1 , X1, ō)}
3: while True do
4: // network differentiation
5: Vr  V [ {Xin0 , Xin1}

6: Create a graph neural architecture G from {Vr,L}
7: Initialize G with new parameters
8: Perform search algorithm: L A(G)
9: if len(V) > S then

10: return {Vr,L}
11: // network division
12: Vtmp  V, Ltmp  L, l len(V)
13: for Xi in Vtmp do
14: V V [ {Xi+l}

15: L L [ {e(Xi, Xi+l, ō)}
16: for e(Xs, Xt, O)|t=i in Ltmp do
17: L L [ {e(Xs, Xi+l, ō)}

18: Ltmp  L
19: for e(Xs, Xt, O)|s2Vtmp,s+l 6=t in Ltmp do
20: L L [ {e(Xs+l, Xt, O)}/{e(Xs, Xt, O)}

tion search space) for simplicity. Since our dual relation-
aware graph search space comprising node and relation
search space is symmetric, it can be generalized to search
the whole dual space simultaneously.

Motivated by the observation that a well-performed
small architecture can provide a good skeleton for build-
ing a larger one (shown in Figure 4), we can efficiently ob-
tain the expected large architecture through iterative search
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5. Ablation Study on Search Paradigm

Figure 5. The best GNN architecture with the network size of 4 searched on the ModelNet40 dataset.

Table 2. Comparision with state-of-the-art architectures on the
ModelNet10 and ModelNet40 datasets at 3D point cloud recog-
nition task. L denotes the size of GNN architecture.

ModelNet10 ModelNet40

Architecture L E Metric Metric Params Search
(#) 2� (OA %) " (OA %) " (M) (Day)

3DmFV [6] / / 95.2 91.6 45.77 m�
PointNet++ [47] / / N/A 90.7 1.48 m�
PCNN [3] / / N/A 92.3 8.20 m�
PointCNN [35] / / N/A 92.2 0.60 m�
DGCNN [55] / / N/A 92.2 1.84 m�
KPConv [52] / / N/A 92.9 14.3 m�
SGAS [32] 9 X N/A 92.93±0.19 8.87 0.19

ARGNP 2 ⇥ 93.20±0.24 91.11±0.24 1.80 0.03
ARGNP 4 ⇥ 93.86±0.25 91.30±0.22 2.27 0.04
ARGNP 8 ⇥ 94.23±0.22 91.85±0.18 3.20 0.15

ARGNP 2 X 95.07±0.31 92.47±0.23 2.50 0.04
ARGNP 4 X 95.35±0.23 92.80±0.19 3.05 0.06
ARGNP 8 X 95.87±0.22 93.33±0.15 4.15 0.20

ent network size settings, relation learning can significantly
improve the capability of graph reasoning. Interestingly,
this improvement is also observed on the CLUSTER, CI-
FAR10, and ModelNet datasets which don’t have original
edge features. Taking the CLUSTER dataset as an exam-
ple, it aims at identifying the community clusters, where the
graphs represent the community networks. The edges play
a role in connecting two nodes and have no original mean-
ingful features. In this case, relation learning can mine hier-
archical relational information by extracting local structural
similarities between nodes. This can help distinguish be-
tween intra-community and extra-community connections
for learning better discriminative node features.

4.4. Ablation of Search Paradigm
To investigate the effectiveness of our Network Prolif-

eration Search Paradigm (NPSP), we conduct the ablation
experiments on ZINC dataset around network size, search
strategy, whether to use cell trick and whether to use NPSP.
We run 14 different experiments and report the results in Ta-
ble 3. We observe the following phenomena. First, the cell
trick improves the search efficiency but weakens the expres-
sive capability of graph search space. This results from its

Table 3. Performance of the relation-aware graph search space
under different settings. Cell is an indicator of whether to use
the cell trick. NPSP is an indicator of whether to use the network
proliferation search. OOM denotes out of memory.

ZINC

# Method L Search Cell NPSP Metric Params Search
(#) Strategy 2� 2� (MAE) # (M) (Day)

1 R-space 8 Random ⇥ ⇥ 0.303±0.058 0.27 0.
2 R-space 8 DARTS X ⇥ 0.160±0.005 0.28 0.17
3 R-space 8 DARTS ⇥ ⇥ 0.157±0.008 0.28 0.30
4 R-space 8 DARTS ⇥ X 0.150±0.006 0.29 0.08
5 R-space 8 SGAS X ⇥ 0.165±0.008 0.30 0.13
6 R-space 8 SGAS ⇥ ⇥ 0.161±0.008 0.30 0.25
7 R-space 8 SGAS ⇥ X 0.155±0.003 0.28 0.06

8 R-space 16 Random ⇥ ⇥ 0.185±0.024 0.51 0.
9 R-space 16 DARTS X ⇥ 0.144±0.004 0.57 0.38
10 R-space 16 DARTS ⇥ ⇥ N/A N/A OOM
11 R-space 16 DARTS ⇥ X 0.139±0.005 0.56 0.24
12 R-space 16 SGAS X ⇥ 0.140±0.003 0.60 0.32
13 R-space 16 SGAS ⇥ ⇥ N/A N/A OOM
14 R-space 16 SGAS ⇥ X 0.136±0.002 0.52 0.21

original assumption where the GNN architecture is a stack
of the same building cells that narrows our relation-aware
graph search space. Therefore, the search strategy with
the cell trick performs worse than that without it, which
is demonstrated by the contrast between exp 2 and exp 3,
exp 5 and exp 6. Second, our NPSP can both significantly
improves the search efficiency and search effect with differ-
ent search strategies. The performance improvement bene-
fits from that the NPSP can alleviate the subnet interference
and mitigate the shrink of search space by breaking away
from the cell assumption. The efficiency improvement lies
in that NPSP shifts the training object from global supernet
to sequential local supernets. They are supported by exp 4,
7, 11, and 14, where NPSP achieves the best performance
with less time cost under all the experimental settings.

4.5. Visualizing Hierarchical Features

To better demonstrate the effectiveness of the relation
learning, we provide relation and node features visualiza-
tion on ModelNet40 dataset. During the inference, we feed
forward one 3D pointcloud object into the network with
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2. Relation-mining operations 
extract relational information 
hidden in each pair of edge-
connected nodes. 

The proposed dual relation-aware gnn search space comprises: 

1. The cell-sharing trick 
improves the search 
efficiency but seriously 
narrows the original search 
space and limits the final 
searched GNN’s capability. 

2. Our network proliferation 
search paradigm can both 
improves the search effect 
and search efficiency. 

3. The proposed search 
paradigm works well with 
different search strategy 
(such as DARTS and SGAS). 

a. L denotes the size of the searched network. 
b. Cell indicates whether to use cell-sharing trick.

c. NPSP indicates whether to use the network 
proliferation search paradigm. 

7. Visualizing Hierarchical Features

8. Searched GNN Results

The network proliferation is an iterative process, which consists of: 

1. Network division: 
divides each feature vertex into two 
parts and constructs a series of local 
super-networks.  

2. Network differentiation:
aims to differentiate each local 
super-network into a specific 
sub-network. 

The spatial-temporal complexity is reduced from 𝑂(𝑛!) to 𝑂(𝑛).

6. Task-based Layer

The Global Node Feature:
𝑉! = 𝜎(𝐵𝑁([𝑉" ∥ ⋯ ∥ 𝑉#]))

The Global Relation Feature:
𝐸! = 𝜎(𝐵𝑁([𝐸" ∥ ⋯ ∥ 𝐸#]))

The Global Graph Representation: 

𝐺! =
1
𝑉!

0
$∈&!

𝑉!$ ∥
1
𝐸!

0
'∈(!

𝐸!$

Different from traditional GNNs 
whose global graph representation 
is only constructed on the readout of 
node features. Our method explicitly 
models relational information, so it 
naturally constructs global graph 
representation with both node and 
relation features. 
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The searched GNN architecture with the size of 4 on the ModelNet. 

1. In the node search space, it 
prefers to choose V_Max as the 
node-learning operation. 

2. In the relation search space, it 
prefers to select E_Sub and E_Had 
as the relation-mining operation. 

1. The learned hierarchical relation features represent different 
message passing preferences and can guide better message 
passing mechanisms to learn more effective node features.

2. ARGNP can capture the structural information and well 
discriminate different parts of the object, which is significantly
better than traditional GNNs without relation learning 
architecture. 

Thanks for your attention.

Visualization of the learned hierarchical features for 3D point cloud recognition


