LabOR: Labeling Only if Required for Domain Adaptive Semantic Segmentation

Inkyu Shin

Dong-Jin Kim

Jae Won Cho

Sanghyun Woo

Kwanyong Park

In So Kweon

Korea Advanced Institute of Science and Technology(KAIST) Robotics and Computer Vision Lab(RCV Lab)

1000

OCTOBER

Bottleneck in Deep learning

Deep learning framework consists of three things:

1. Data Acquisition 2. Data Labeling

3. Model Training

OCTOBER 11-1

Bottleneck in Deep learning

Deep learning framework consists of three things:

<Sensor>

3. Model Training

Training K Loading

Prediction

Bottleneck in Deep learning

Deep learning framework consists of three things:

Data labeling is the main bottleneck in deep learning framework.

Labeling for Semantic Segmentation

Specifically, we need a pixel-level labeling for semantic segmentation.

Images

Human annotators

Ground truth

CONTROL TO A CONTROL PROVINCE AND A CONTROL PROVIDENCE AND A CONTROL PR

Labeling for Semantic Segmentation

There are two major issues on real-world labeling for semantic segmentation #1. labor-cost(Time and Expense)

Images

Human annotators

Ground truth

Cost about 9 minutes and 30\$ per one label^[1]

Labeling for Semantic Segmentation

There are two major issues on real-world labeling for semantic segmentation #2. labeling inaccuracy

Images (t, t+1 frames)

Human annotators

Ground truth (t, t+1 frames)

Human error due to intensive labor^[1]

Labeling for Semantic Segmentation

To solve these issues, data from simulator[1,2,3] are used with very small amount of labeling cost and high accuracy

Cost about 7 seconds and *almost 0\$* per one label^[1]

SR Richter et al., Playing for Benchmarks. ICCV 2017.
 SR Richter et al., Playing for Data: Ground Truth from Computer Games. ECCV 2016.
 G Ros et al., The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. CVPR 2016

CONTROL TO A CONTROL PROVINCE AND A CONTROL PROVIDENCE AND A CONTROL PR

Labeling for Semantic Segmentation

To solve these issues, data from simulator[1,2,3] are used with very small amount of labeling cost and high accuracy.

The effectiveness of using simulator data

SR Richter et al., Playing for Benchmarks. ICCV 2017.
 SR Richter et al., Playing for Data: Ground Truth from Computer Games. ECCV 2016.
 G Ros et al., The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. CVPR 2016.

CONTROL TO A CONTROL PROVINCE AND A CONTROL PROVIDENCE AND A CONTROL PR

Unsupervised Domain Adaptation

UDA aims to transfer the knowledge learned from labeled simulator data.Make segmentation model to be **domain adaptive**.

Make it to be domain adaptive

Previous Domain Adaptation

Previous Domain Adaptation (UDA) consists of three paradigms:

Previous Domain Adaptation

Previous Domain Adaptation (UDA) consists of three paradigms: Adversarial Learning based DA (L_{adv})

- AdaptSegNet[1], Advent[2], CLAN[3], PatchAdapt[4], MaxSquare[5]

[1] Learning to Adapt Structured Output Space for Semantic Segmentation, Tsai et al., CVPR 2018

- [2] ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation, Vu et al., CVPR 2019
- [3] Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation, Luo et al., CVPR 2019
- [4] Domain Adaptation for Structured Output via Discriminative Patch Representations, Tsai et al., ICCV 2019
- [5] Domain Adaptation for Semantic Segmentation with Maximum Squares Loss, Chen et al., ICCV 2019

Previous Domain Adaptation

Previous Domain Adaptation (UDA) consists of three paradigms: Self-training based DA (L_{st})

- CBST[1], CRST[2]

[1] Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training, Zou et al., ECCV 2018
 [2] Confidence Regularized Self-Training, Zou et al., ICCV 2019

Previous Domain Adaptation

Previous Domain Adaptation (UDA) consists of three paradigms: Adversarial + Self-training based DA ($L_{adv} + L_{st}$)

- BDL[1], IntraDA[2], SIM[3], TPLD[4], IAST[5]

[1] Bidirectional Learning for Domain Adaptation of Semantic Segmentation, Li et al., CVPR 2019

- [2] Unsupervised Intra-domain Adaptation for Semantic Segmentation through Self-Supervision, Pan et al., CVPR 2020
- [3] Differential Treatment for Stuff and Things: A Simple Unsupervised Domain Adaptation Method for Semantic Segmentation, Wang et al., CVPR 2020
- [4] Two-phase Pseudo Label Densification for Self-training based Domain Adaptation, Shin et al., ECCV 2020
- [5] Instance Adaptive Self-Training for Unsupervised Domain Adaptation, Mei et al., ECCV 2020

CONTROL TO A CONTROL PROVINCE AND A CONTROL PROVIDENCE AND A CONTROL PR

Previous Domain Adaptation

The performance limitations are clear as it still lags far behind the fully supervised model.

Previous Domain Adaptation

The performance limitations are clear as it still lags far behind the fully supervised model.

Domain Adaptation with real-data few labels

Assuming we are not able to obtain real-data labels is not practical.

 \rightarrow We need to find a way to boost the performance even with very few real data labels

CONTROL TO A CONTROL PROVINCE A CONTROL PROVIDENCE A CONTROL PROVIDA CONTROL PROVIDA CONTROL PROVIDA CONTROL PROVI

Related work – Domain Adaptation with Weak Label

Weak Domain Adaptation (WDA)[1] uses point labels. Point labels from each category (Human picks randomly)

[1] Domain Adaptive Semantic Segmentation Using Weak Labels, Paul et al., ECCV 2020

Related work – Domain Adaptation with Weak Label

- Still lags far behind the fully-supervised model performance.
- It could be sensitive to human's randomness.

Our method - LabOR

We propose Active Domain Adaptation, LabOR (Labeling Only if Require).

- model (Pixel Selector) lets us know where we need to label
- SPL and PPL method depending on how to labeling

Our method - LabOR

Our method achieves very near to supervised performance.

GTA5 → Cityscapes

Our method - LabOR

1. UDA model provides pseudo label for pixel selector

Our method - LabOR

1. UDA model provides pseudo label for pixel selector

CONTROL TO A CONTROL PROVINCE NO CONTROL PROVIDENCE PRO

Our method - LabOR

2. Pixel selector model is trained to bring out inconsistent mask via maximizing classifiers' discrepancy

Our method - LabOR

3. Based on inconsistent mask (SPL or PPL), conduct pixel labeling and training on target data.

1. UDA model

3. Pixel Labeling

2. Pixel Selector model

No ICCV OCTOBER 11-17

Pseudo Label

SPL region

R ICCV OCTOBER 11-17

Pseudo Label

<section-header>

Our method - LabOR

This process is conducted iteratively as human-in-the-loop manner.

Our method - LabOR

Our Algorithm

Al	Algorithm 1: Pixel Selector Model									
I	Input: Source data S , Target data T , Initialized									
	$model\; f_\theta \circ g_\phi(\cdot)$									
C	Output: The model with adapted weights on target									
	dataset $f_ heta \circ g_\phi(\cdot)$									
1 b	egin									
2	Pre-train the model on the source dataset.									
3	And, initial adapt with adversarial learning.									
4	$\theta, \phi \leftarrow \arg\min_{\theta, \phi} \mathcal{L}_s(\theta, \phi) + \mathcal{L}_{adv}(\theta, \phi)$									
	(Eq. (1))									
5	for 3 Stages do									
6	Define auxiliary layers and copy weights									
7	$egin{array}{cccccccccccccccccccccccccccccccccccc$									
8	Apply self-training (Eq. (3))									
9	$\phi', \theta'_1, \theta'_2 \leftarrow \arg\min \mathcal{L}_{\text{self}}(\phi', \theta'_1, \theta'_2)$									
	$\phi', heta_1', heta_2'$									
10	Maximize classifier discrepancy (Eq. (4))									
11	$\phi^{'}, \theta^{'}_{1}, \theta^{'}_{2} \leftarrow \argmin_{\phi^{'}} \max_{\theta^{'}_{1}, \theta^{'}_{2}} \mathcal{L}_{dis}(\phi^{'}, \theta^{'}_{1}, \theta^{'}_{2})$									
12	for $\mathbf{x}_t \in \mathcal{T}$ do									
13	Generate $M(\mathbf{x}_t; \phi', \theta'_1, \theta'_2)$ with Eq. (2).									
14	if SPL then									
15	Annotate inconsistency mask									
16	$ \begin{bmatrix} \tilde{\mathbf{Y}}_t(\mathbf{x}_t) \leftarrow M(\mathbf{x}_t) \odot \mathbf{Y}_t \end{bmatrix} $									
17	else if <i>PPL</i> then									
18	Select representative points									
19	$P(\mathbf{x}_t) = \text{SelectPt}(M, p(\mathbf{Y} \mathbf{x}_t; \theta, \phi))$									
20	Annotate the points									
21	$ \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \tilde{\mathbf{Y}}_t(\mathbf{x}_t) \leftarrow P(\mathbf{x}_t) \odot \mathbf{Y}_t $									
22	Train the model with the pseudo labels									
23	$\theta, \phi \leftarrow \arg \min_{\theta, \phi} \mathcal{L}_t(\theta, \phi) \text{ (Eq. (5))}$									

Pretrain on source & Adversarial learning

$$\mathcal{L}_{s}(\theta,\phi) = \mathbb{E}_{(\mathbf{x}_{s},\mathbf{Y}_{s})\in\mathcal{S}} \big[\operatorname{CE}(\mathbf{Y}_{s}, p(\mathbf{Y}|\mathbf{x}_{s};\theta,\phi)) \big].$$
(1)

$$\mathcal{L}_{adv}(\theta,\phi) = \mathbb{E}_{\mathbf{x}_s \in \mathcal{S}, \mathbf{x}_t \in \mathcal{T}} \big[\mathrm{Adv}(p(\mathbf{x}_s;\theta,\phi), p(\mathbf{x}_t;\theta,\phi)) \big].$$

Our method - LabOR

Our Algorithm

	lg	Jgorithm 1: Pixel Selector Model								
	Input: Source data S Target data \mathcal{T} Initialized									
	model $f_0 \circ a_1(.)$									
	Output: The model with adapted weights on target									
	dataset $f_0 \circ a_1(x)$									
1	hegin									
1		Pre-train the model on the source dataset								
3		And initial adapt with adversarial learning								
4		$\theta \neq \arg \min_{\theta \neq f} f_{i\theta}(\theta, \phi) + f_{i\theta} d_{i\theta}(\theta, \phi)$								
		(Eq. (1)) $(E_{\alpha} (1))$								
5	for 3 Stages do									
6		Define auxiliary layers and copy weights								
7		$\theta'_{i} \leftarrow \theta \theta'_{i} \leftarrow \theta \phi'_{i} \leftarrow \phi$								
8		Apply self-training (Eq. (3))								
0		$\frac{1}{1} \frac{1}{1} \frac{1}$								
9		$\phi, \theta_1, \theta_2 \leftarrow \operatorname*{argmin}_{t', \theta', \theta'} \mathcal{L}_{self}(\phi, \theta_1, \theta_2)$								
10		Maximize classifier discrepancy (Eq. (4))								
10		$\phi' \theta' \theta' \phi'$ arg min may $\mathcal{C} (\phi' \theta' \theta')$								
11		$\phi, \theta_1, \theta_2 \leftarrow \arg\min_{\phi'} \max_{\theta'_1, \theta'_2} \mathcal{L}_{\text{dis}}(\phi, \theta_1, \theta_2)$								
12		for $\mathbf{x}_t \in \mathcal{T}$ do								
13		Generate $M(\mathbf{x}_t; \boldsymbol{\phi}', \boldsymbol{\theta}_1', \boldsymbol{\theta}_2')$ with Eq. (2).								
14		if SPL then								
15		Annotate inconsistency mask								
16		$\begin{bmatrix} \tilde{\mathbf{Y}}_t(\mathbf{x}_t) \leftarrow M(\mathbf{x}_t) \odot \mathbf{Y}_t \end{bmatrix}$								
17		else if <i>PPL</i> then								
18		Select representative points								
19		$P(\mathbf{x}_t) = \text{SelectPt}(M, p(\mathbf{Y} \mathbf{x}_t; \theta, \phi))$								
20		Annotate the points								
21		$\left[\begin{array}{c} \mathbf{\tilde{Y}}_t(\mathbf{x}_t) \leftarrow P(\mathbf{x}_t) \odot \mathbf{Y}_t \end{array} \right]$								
22		Train the model with the pseudo labels								
23		$\theta, \phi \leftarrow \arg \min_{\theta, \phi} \mathcal{L}_t(\theta, \phi) \text{ (Eq. (5))}$								
20 21		$ \begin{bmatrix} Annotate the points \\ \tilde{\mathbf{Y}}_t(\mathbf{x}_t) \leftarrow P(\mathbf{x}_t) \odot \mathbf{Y}_t \end{bmatrix} $ Train the model with the pseudo labels								
23		$\theta, \phi \leftarrow \arg\min_{\theta, \phi} \mathcal{L}_t(\theta, \phi) \text{ (Eq. (5))}$								

Pretrain on source & Adversarial learning

$$\mathcal{L}_{s}(\theta,\phi) = \mathbb{E}_{(\mathbf{x}_{s},\mathbf{Y}_{s})\in\mathcal{S}} \big[\operatorname{CE}(\mathbf{Y}_{s}, p(\mathbf{Y}|\mathbf{x}_{s};\theta,\phi)) \big].$$
(1)

$$\mathcal{L}_{adv}(\theta,\phi) = \mathbb{E}_{\mathbf{x}_s \in \mathcal{S}, \mathbf{x}_t \in \mathcal{T}} \big[\mathrm{Adv}(p(\mathbf{x}_s;\theta,\phi), p(\mathbf{x}_t;\theta,\phi)) \big].$$

Maximize Classifiers' Discrepancy

$$\mathcal{L}_{self}(\phi', \theta'_{1}, \theta'_{2}) = \mathbb{E}_{\mathbf{x}_{t} \in \mathcal{T}} \Big[CE(\arg\max_{K} \hat{\mathbf{Y}}_{t}, p(\mathbf{Y} | \mathbf{x}_{t}; \theta'_{1}, \phi')) + CE(\arg\max_{K} \hat{\mathbf{Y}}_{t}, p(\mathbf{Y} | \mathbf{x}_{t}; \theta'_{2}, \phi')) \Big].$$
(3)
min max $\mathcal{L}_{\mathbf{x}_{t}}(\phi', \theta'_{1}, \theta'_{2})$

$$= \min_{\phi'} \max_{\theta'_1, \theta'_2} \mathbb{E}_{\mathbf{x}_t \in \mathcal{T}} \Big[||f_{\theta'_1} \circ g_{\phi'}(\mathbf{x}_t) - f_{\theta'_2} \circ g_{\phi'}(\mathbf{x}_t)||_1 \Big].$$
(4)

Our method - LabOR

Our Algorithm

	Algorithm 1: Pixel Selector Model									
	Input: Source data S Target data \mathcal{T} Initialized									
	model $f_0 \circ a_1(\cdot)$									
	Output: The model with adapted weights on target									
	dataset $f_0 \circ a_1(\cdot)$									
1	1 begin									
2	Pre-train the model on the source dataset									
3	And, initial adapt with adversarial learning.									
4	4 $\theta, \phi \leftarrow \arg \min_{\theta, \phi} \mathcal{L}_{\alpha}(\theta, \phi) + \mathcal{L}_{\alpha d \alpha}(\theta, \phi)$									
	(Eq. (1))									
5	5 for 3 Stages do									
6	Define auxiliary layers and copy weights									
7	$ heta_1' \leftarrow heta, heta_2' \leftarrow heta, \phi' \leftarrow \phi$									
8	Apply self-training (Eq. (3))									
9	$\phi', \theta'_1, \theta'_2 \leftarrow \arg \min \mathcal{L}_{self}(\phi', \theta'_1, \theta'_2)$									
	$\phi', \theta'_1, \theta'_2$									
10	Maximize classifier discrepancy (Eq. (4))									
11	$\phi', \theta'_1, \theta'_2 \leftarrow \arg\min\max \mathcal{L}_{dis}(\phi', \theta'_1, \theta'_2)$									
	$\begin{array}{ccc} \phi' & \theta_1', \theta_2' \end{array} \qquad $									
12	for $\mathbf{x}_t \in \mathcal{T}$ do									
13	Generate $M(\mathbf{x}_t; \boldsymbol{\phi}', \boldsymbol{\theta}_1', \boldsymbol{\theta}_2)$ with Eq. (2).									
14	if SPL then									
15	Annotate inconsistency mask									
16	$\tilde{\mathbf{Y}}_t(\mathbf{x}_t) \leftarrow M(\mathbf{x}_t) \odot \mathbf{Y}_t$									
17	else if <i>PPL</i> then									
18	Select representative points									
19	$P(\mathbf{x}_t) = \text{SelectPt}(M, p(\mathbf{Y} \mathbf{x}_t; \theta, \phi))$									
20	Annotate the points									
21	$\tilde{\mathbf{Y}}_t(\mathbf{x}_t) \leftarrow P(\mathbf{x}_t) \odot \mathbf{Y}_t$									
	Train the model with the needed labels									
22	I rain the model with the pseudo labels $\theta_{1}\phi_{2}$ and $\phi_{3}\phi_{4}$ and $\phi_{5}\phi_{4}$									
23	$ [0, \varphi \leftarrow \arg \min_{\theta, \phi} \mathcal{L}_t(\theta, \varphi) \text{ (Eq. (5))} $									

Pretrain on source & Adversarial learning

$$\mathcal{L}_{s}(\theta,\phi) = \mathbb{E}_{(\mathbf{x}_{s},\mathbf{Y}_{s})\in\mathcal{S}} \big[\operatorname{CE}(\mathbf{Y}_{s}, p(\mathbf{Y}|\mathbf{x}_{s};\theta,\phi)) \big].$$
(1)

$$\mathcal{L}_{adv}(\theta,\phi) = \mathbb{E}_{\mathbf{x}_s \in \mathcal{S}, \mathbf{x}_t \in \mathcal{T}} \big[\mathrm{Adv}(p(\mathbf{x}_s;\theta,\phi), p(\mathbf{x}_t;\theta,\phi)) \big].$$

Maximize Classifiers' Discrepancy

$$\mathcal{L}_{self}(\phi', \theta'_{1}, \theta'_{2}) = \mathbb{E}_{\mathbf{x}_{t} \in \mathcal{T}} \Big[CE(\arg\max_{K} \hat{\mathbf{Y}}_{t}, p(\mathbf{Y} | \mathbf{x}_{t}; \theta'_{1}, \phi')) + CE(\arg\max_{K} \hat{\mathbf{Y}}_{t}, p(\mathbf{Y} | \mathbf{x}_{t}; \theta'_{2}, \phi')) \Big].$$
(3)

$$\min_{\boldsymbol{\phi}'} \max_{\boldsymbol{\theta}_1', \boldsymbol{\theta}_2'} \mathcal{L}_{\text{dis}}(\boldsymbol{\phi}', \boldsymbol{\theta}_1', \boldsymbol{\theta}_2') \\= \min_{\boldsymbol{\phi}'} \max_{\boldsymbol{\theta}_1', \boldsymbol{\theta}_2'} \mathbb{E}_{\mathbf{x}_t \in \mathcal{T}} \Big[||f_{\boldsymbol{\theta}_1'} \circ g_{\boldsymbol{\phi}'}(\mathbf{x}_t) - f_{\boldsymbol{\theta}_2'} \circ g_{\boldsymbol{\phi}'}(\mathbf{x}_t)||_1 \Big].$$
(4)

Pixel Labeling (SPL or PPL)

SPL on all inconsistent mask
 PPL in <u>SelectPt</u>^[1] from inconsistent mask

CONTROL OCTOBER 11-17

Our method - LabOR

Our Algorithm

A	Algorithm 1: Pixel Selector Model							
	Input: Source data S , Target data T , Initialized							
	$model\; f_\theta \circ g_\phi(\cdot)$							
	Output: The model with adapted weights on target							
	dataset $f_ heta \circ g_\phi(\cdot)$							
1	begin							
2	Pre-train the model on the source dataset.							
3	And, initial adapt with adversarial learning.							
4	$\theta, \phi \leftarrow \arg\min_{\theta, \phi} \mathcal{L}_s(\theta, \phi) + \mathcal{L}_{adv}(\theta, \phi)$							
	(Eq.(1))							
5	for 3 Stages do							
6	Define auxiliary layers and copy weights							
7	$\theta_1 \leftarrow \theta, \theta_2 \leftarrow \theta, \phi \leftarrow \phi$							
8	Apply self-training (Eq. (3))							
9	$\phi', \theta'_1, \theta'_2 \leftarrow \arg\min \mathcal{L}_{\text{self}}(\phi', \theta'_1, \theta'_2)$							
	$\phi', heta_1', heta_2'$							
10	Maximize classifier discrepancy (Eq. (4))							
11	$\phi^{'}, \theta^{'}_{1}, \theta^{'}_{2} \leftarrow \argmin_{\phi^{'}} \max_{\theta^{'}_{1}, \theta^{'}_{2}} \mathcal{L}_{dis}(\phi^{'}, \theta^{'}_{1}, \theta^{'}_{2})$							
12	for $\mathbf{x}_t \in \mathcal{T}$ do							
13	Generate $M(\mathbf{x}_t; \boldsymbol{\phi}', \boldsymbol{\theta}_1', \boldsymbol{\theta}_2')$ with Eq. (2).							
14	if SPL then							
15	Annotate inconsistency mask							
16	$ \begin{bmatrix} \tilde{\mathbf{Y}}_t(\mathbf{x}_t) \leftarrow M(\mathbf{x}_t) \odot \mathbf{Y}_t \end{bmatrix} $							
17	else if PPL then							
18	Select representative points							
19	$P(\mathbf{x}_t) = \text{SelectPt}(M, p(\mathbf{Y} \mathbf{x}_t; \theta, \phi))$							
20	Annotate the points							
21								
22	Train the model with the pseudo labels							
23	$\theta, \phi \leftarrow \operatorname{argmin}_{\theta,\phi} \mathcal{L}_t(\theta, \phi) \text{ (Eq. (5))}$							

Pretrain on source & Adversarial learning

$$\mathcal{L}_{s}(\theta,\phi) = \mathbb{E}_{(\mathbf{x}_{s},\mathbf{Y}_{s})\in\mathcal{S}} \big[\operatorname{CE}(\mathbf{Y}_{s},p(\mathbf{Y}|\mathbf{x}_{s};\theta,\phi)) \big].$$
(1)

$$\mathcal{L}_{adv}(\theta,\phi) = \mathbb{E}_{\mathbf{x}_s \in \mathcal{S}, \mathbf{x}_t \in \mathcal{T}} \big[\mathrm{Adv}(p(\mathbf{x}_s;\theta,\phi), p(\mathbf{x}_t;\theta,\phi)) \big].$$

Maximize Classifiers' Discrepancy

$$\mathcal{L}_{self}(\phi', \theta'_{1}, \theta'_{2}) = \mathbb{E}_{\mathbf{x}_{t} \in \mathcal{T}} \Big[CE(\arg\max_{K} \hat{\mathbf{Y}}_{t}, p(\mathbf{Y} | \mathbf{x}_{t}; \theta'_{1}, \phi')) + CE(\arg\max_{K} \hat{\mathbf{Y}}_{t}, p(\mathbf{Y} | \mathbf{x}_{t}; \theta'_{2}, \phi')) \Big].$$
(3)

$$\min_{\phi'} \max_{\theta'_1, \theta'_2} \mathcal{L}_{\text{dis}}(\phi', \theta'_1, \theta'_2)$$

=
$$\min_{\phi'} \max_{\theta'_1, \theta'_2} \mathbb{E}_{\mathbf{x}_t \in \mathcal{T}} \Big[||f_{\theta'_1} \circ g_{\phi'}(\mathbf{x}_t) - f_{\theta'_2} \circ g_{\phi'}(\mathbf{x}_t)||_1 \Big].$$
(4)

Pixel Labeling (SPL or PPL)

SPL on all inconsistent mask(M)
 PPL in <u>SelectPt</u>^[1] from inconsistent mask

Training with selected target label

 $\mathcal{L}_t(\theta, \phi) = \mathbb{E}_{\mathbf{x}_t \in \mathcal{T}} \big[\mathsf{CE}(\mathbf{Y}_t(\mathbf{x}_t), p(\mathbf{Y} | \mathbf{x}_t; \theta, \phi)) \big] \quad (5)$

Labeling Procedure

<LabOR-embedded labeling tool>

Labeling Procedure

<LabOR-embedded labeling tool>

Labeling Procedure

<LabOR-embedded labeling tool>

Our result - LabOR

Our method achieves very near to fully supervised model performance.

			1 A		1000										- AA - A					
								GTA	$5 \rightarrow Ci$	tyscapes										
Method	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	PR	Rider	Car	Truck	Bus	Train	Motor	Bike	mIoU
No Adapt	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6
AdaptSegNet [43]	86.5	36.0	79.9	23.4	23.3	35.2	14.8	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
ADVENT [44]	89.9	36.5	81.2	29.2	25.2	28.5	32.3	22.4	83.9	34.0	77.1	57.4	27.9	83.7	29.4	39.1	1.5	28.4	23.3	43.8
SIMDA [46]	90.6	44.7	84.8	34.3	28.7	31.6	35.0	37.6	84.7	43.3	85.3	57.0	31.5	83.8	42.6	48.5	1.9	30.4	39.0	49.2
LTIR [18]	92.9	55.0	85.3	34.2	31.1	34.9	40.7	34.0	85.2	40.1	87.1	61.0	31.1	82.5	32.3	42.9	0.3	36.4	46.1	50.2
PCEDA [47]	91.0	49.1	85.6	37.2	29.7	33.7	38.1	39.2	85.4	35.4	85.1	61.1	32.8	84.1	45.6	46.9	0.0	34.2	44.5	50.5
FDA [48]	92.5	53.3	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.5
CBST [50]	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
CRST(MRKLD) [52]	91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1
TPLD [40]	94.2	60.5	82.8	36.6	16.6	39.3	29.0	25.5	85.6	44.9	84.4	60.6	27.4	84.1	37.0	47.0	31.2	36.1	50.3	51.2
IAST [26]	93.8	57.8	85.1	39.5	26.7	26.2	43.1	34.7	84.9	32.9	88.0	62.6	29.0	87.3	39.2	49.6	23.2	34.7	39.6	51.5
WDA [31] (Point)	94.0	62.7	86.3	36.5	32.8	38.4	44.9	51.0	86.1	43.4	87.7	66.4	36.5	87.9	44.1	58.8	23.2	35.6	55.9	56.4
Ours (PPL: Point)	96.1	71.8	88.8	47.0	46.5	42.2	53.1	60.6	89.4	55.1	91.4	70.8	44.7	90.6	56.7	47.9	39.1	47.3	62.7	63.5
Ours (SPL: Segment)	96.6	77.0	89.6	47.8	50.7	48.0	56.6	63.5	89.5	57.8	91.6	72.0	47.3	91.7	62.1	61.9	48.9	47.9	65.3	66.6
Supervised	96.9	77.1	89.8	45.6	49.9	47.4	55.8	64.1	90.0	58.2	92.8	71.9	46.9	91.4	60.3	65.8	54.3	44.6	64.7	66.7

Our result - LabOR

Self baseline for SPL

100

Our result - LabOR

Self baseline for PPL

Point based Pixel Labeling (PPL)

100

Rest ICCV OCTOBER 11-17

Our result - LabOR

Qualitative result

Our analysis - LabOR

The visualization of the generated regions to label - Ours SPL can avoid 'lump' of labels.

CONTROL TO A CONTROL PROVINCE AND A CONTROL PROVIDENCE AND A CONTROL PR

Our analysis - LabOR

The diversity of pixel classes selected for Ours and Entropy - Our SPL has a much more even distribution in many of the classes, while Entropy has many classes that are rarely selected

■ Step #2 ■ Step #3

CONTROL CONTRO

Our analysis - LabOR

(a) Labeling cost graph

(b) Zoomed-in Labeling cost graph

Labeling Type	Seconds (s)	Minutes (mins)	Hours (hr)	mIoU (%)
PPL	223,115	3,719	62	63.5
SPL	3,599,750	59,996	1,000	66.6
Full Image Label	16,065,000	267,750	4,463	66.7

https://www.nec-labs.com/~mas/WeakSegDA/

CONTROL TO A CONTROL PROVINCE A CONTROL PROVIDENCE A CONTROL PROVIDA CONTROL PROVIDA CONTROL PROVIDA CONTROL PROVI

Ongoing & Future work

1. Unsupervised Domain Adaptation for Video Semantic Segmentation (Ongoing)

https://arxiv.org/pdf/2107.11052.pdf

2. LabOR for Video Domain Adaptation (Future)

Thank you

Contact: dlsrbgg33@kaist.ac.kr Homepage: dlsrbgg33.github.io