Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning

James Smith¹

Yen-Chang Hsu²

Jonathan Balloch¹

Yilin Shen²

Hongxia Jin²

Zsolt Kira¹

¹Georgia Tech, ²Samsung Research America

Introduction: Neural Networks Forget

- Typical learning with neural networks
 - Offline training
 - Shuffled inputs satisfy i.i.d. assumptions
- Continual Learning with neural networks
 - Tasks encountered sequentially
 - Catastrophic forgetting: overwrite information from past task(s)
- **Question**: how do we acquire new information without forgetting?

Replay in Continual Learning has Concerns

Internal Replay

- Store data from past tasks
- Replay stored data in future tasks

Concerns

- Requires substantial memory budget
- Some data cannot be stored due to privacy concerns

Idea: Dream Replay Images from Model

Problem: "dreamed" images fail for class-incremental continual learning distillation!

"Dreaming to Distill: Data-Free Knowledge Transfer via Deeplnversion", Yin et al., CVPR 2020

Improve Distillation for *Dream* Images

Diagnosis

- Feature embeddings prioritize
 domain (i.e., synthetic versus
 real data) over semantics (i.e.,
 task 1 versus task 2)
- Bias: model predicts previous task images with current task labels!

▲ Fig: t-SNE visualization for DeepInversion (Yin et al., 2020) on two iCIFAR-100 task

Improve Distillation for *Dream* Images

Improve Distillation for *Dream* Images

https://jamessealesmith.github.io/project/dfcil/

James Smith¹

Yen-Chang Hsu²

Jonathan Balloch¹

Yilin Shen²

Hongxia Jin²

Zsolt Kira¹

This work is supported by Samsung Research America.