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Introduction: Neural Networks Forget
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• Typical learning with neural networks
• Offline training
• Shuffled inputs satisfy i.i.d. assumptions

• Continual Learning with neural networks
• Tasks encountered sequentially
• Catastrophic forgetting: overwrite information 

from past task(s)

• Question: how do we acquire new 
information without forgetting?
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Replay in Continual Learning has Concerns
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Internal Replay

● Internal Replay

● Store data from past tasks

● Replay stored data in future tasks

● Concerns

● Requires substantial memory 

budget

● Some data cannot be stored due to 

privacy concerns
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Idea: Dream Replay Images from Model
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T Losses

Y(1) Initialize batch of random image 
tensors (X) and optimize wrt X

(2) Randomly sample 
target labels from class 
distribution

X

Problem: “dreamed” images fail for class-incremental continual learning distillation!

“Dreaming to Distill: Data-Free Knowledge Transfer via DeepInversion”, Yin et al., CVPR 2020

(3) Set up optimization to 
“uncover” data T was trained on
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Improve Distillation for Dream Images
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▲ Fig: t-SNE visualization for DeepInversion
(Yin et al., 2020) on two iCIFAR-100 task

● Diagnosis

● Feature embeddings prioritize 

domain (i.e., synthetic versus 

real data) over semantics (i.e., 

task 1 versus task 2)

● Bias: model predicts previous 

task images with current task 

labels!

“Dreaming to Distill: Data-Free Knowledge Transfer via DeepInversion”, Yin et al., CVPR 2020
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Improve Distillation for Dream Images
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How can remove 
this bias problem?
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Improve Distillation for Dream Images
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We remove this 
bias problem!
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https://jamessealesmith.github.io/project/dfcil/
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